Guy Michael P, Phizicky Eric M
Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
RNA. 2015 Jan;21(1):61-74. doi: 10.1261/rna.047639.114. Epub 2014 Nov 17.
Post-transcriptional tRNA modifications are critical for efficient and accurate translation, and have multiple different roles. Lack of modifications often leads to different biological consequences in different organisms, and in humans is frequently associated with neurological disorders. We investigate here the conservation of a unique circuitry for anticodon loop modification required for healthy growth in the yeast Saccharomyces cerevisiae. S. cerevisiae Trm7 interacts separately with Trm732 and Trm734 to 2'-O-methylate three substrate tRNAs at anticodon loop residues C₃₂ and N₃₄, and these modifications are required for efficient wybutosine formation at m(1)G₃₇ of tRNA(Phe). Moreover, trm7Δ and trm732Δ trm734Δ mutants grow poorly due to lack of functional tRNA(Phe). It is unknown if this circuitry is conserved and important for tRNA(Phe) modification in other eukaryotes, but a likely human TRM7 ortholog is implicated in nonsyndromic X-linked intellectual disability. We find that the distantly related yeast Schizosaccharomyces pombe has retained this circuitry for anticodon loop modification, that S. pombe trm7Δ and trm734Δ mutants have more severe phenotypes than the S. cerevisiae mutants, and that tRNA(Phe) is the major biological target. Furthermore, we provide evidence that Trm7 and Trm732 function is widely conserved throughout eukaryotes, since human FTSJ1 and THADA, respectively, complement growth defects of S. cerevisiae trm7Δ and trm732Δ trm734Δ mutants by modifying C₃₂ of tRNA(Phe), each working with the corresponding S. cerevisiae partner protein. These results suggest widespread importance of 2'-O-methylation of the tRNA anticodon loop, implicate tRNA(Phe) as the crucial substrate, and suggest that this modification circuitry is important for human neuronal development.
转录后tRNA修饰对于高效且准确的翻译至关重要,并且具有多种不同作用。修饰的缺失往往会在不同生物体中导致不同的生物学后果,而在人类中则常常与神经紊乱相关。我们在此研究酿酒酵母中健康生长所需的反密码子环修饰独特通路的保守性。酿酒酵母Trm7分别与Trm732和Trm734相互作用,使三个底物tRNA的反密码子环残基C₃₂和N₃₄发生2'-O-甲基化,并且这些修饰是tRNA(Phe)的m(1)G₃₇处有效形成wybutosine所必需的。此外,trm7Δ和trm732Δ trm734Δ突变体由于缺乏功能性tRNA(Phe)而生长不良。尚不清楚该通路在其他真核生物中对于tRNA(Phe)修饰是否保守且重要,但一个可能的人类TRM7直系同源物与非综合征性X连锁智力障碍有关。我们发现远缘相关的粟酒裂殖酵母保留了这种反密码子环修饰通路,粟酒裂殖酵母trm7Δ和trm734Δ突变体具有比酿酒酵母突变体更严重的表型,并且tRNA(Phe)是主要的生物学靶点。此外,我们提供证据表明Trm7和Trm732的功能在整个真核生物中广泛保守,因为人类FTSJ1和THADA分别通过修饰tRNA(Phe)的C₃₂来弥补酿酒酵母trm7Δ和trm732Δ trm734Δ突变体的生长缺陷,它们各自与相应的酿酒酵母伴侣蛋白协同作用。这些结果表明tRNA反密码子环的2'-O-甲基化具有广泛的重要性,表明tRNA(Phe)是关键底物,并表明这种修饰通路对人类神经元发育很重要。