Rudra Pratyaydipta, Broadaway K Alaine, Ware Erin B, Jhun Min A, Bielak Lawrence F, Zhao Wei, Smith Jennifer A, Peyser Patricia A, Kardia Sharon L R, Epstein Michael P, Ghosh Debashis
Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, United States of America.
Department of Human Genetics, Emory University, Atlanta, Georgia, United States of America.
Genet Epidemiol. 2018 Jun;42(4):320-332. doi: 10.1002/gepi.22121. Epub 2018 Mar 30.
Many gene mapping studies of complex traits have identified genes or variants that influence multiple phenotypes. With the advent of next-generation sequencing technology, there has been substantial interest in identifying rare variants in genes that possess cross-phenotype effects. In the presence of such effects, modeling both the phenotypes and rare variants collectively using multivariate models can achieve higher statistical power compared to univariate methods that either model each phenotype separately or perform separate tests for each variant. Several studies collect phenotypic data over time and using such longitudinal data can further increase the power to detect genetic associations. Although rare-variant approaches exist for testing cross-phenotype effects at a single time point, there is no analogous method for performing such analyses using longitudinal outcomes. In order to fill this important gap, we propose an extension of Gene Association with Multiple Traits (GAMuT) test, a method for cross-phenotype analysis of rare variants using a framework based on the distance covariance. The approach allows for both binary and continuous phenotypes and can also adjust for covariates. Our simple adjustment to the GAMuT test allows it to handle longitudinal data and to gain power by exploiting temporal correlation. The approach is computationally efficient and applicable on a genome-wide scale due to the use of a closed-form test whose significance can be evaluated analytically. We use simulated data to demonstrate that our method has favorable power over competing approaches and also apply our approach to exome chip data from the Genetic Epidemiology Network of Arteriopathy.
许多复杂性状的基因定位研究已经确定了影响多种表型的基因或变异。随着下一代测序技术的出现,人们对识别具有交叉表型效应的基因中的罕见变异产生了浓厚兴趣。在存在这种效应的情况下,与分别对每个表型进行建模或对每个变异进行单独测试的单变量方法相比,使用多变量模型对表型和罕见变异进行联合建模可以获得更高的统计效力。一些研究随时间收集表型数据,使用这种纵向数据可以进一步提高检测基因关联的效力。虽然存在用于在单个时间点测试交叉表型效应的罕见变异方法,但没有类似的方法用于使用纵向结果进行此类分析。为了填补这一重要空白,我们提出了多性状基因关联(GAMuT)测试的扩展,这是一种使用基于距离协方差的框架对罕见变异进行交叉表型分析的方法。该方法允许处理二元和连续表型,还可以对协变量进行调整。我们对GAMuT测试的简单调整使其能够处理纵向数据,并通过利用时间相关性来提高效力。由于使用了可以通过解析评估其显著性的闭式测试,该方法计算效率高且适用于全基因组规模。我们使用模拟数据证明我们的方法比竞争方法具有更好的效力,并将我们的方法应用于动脉病遗传流行病学网络的外显子芯片数据。