Regeneron Genetics Center, Tarrytown, NY 10591, USA; Department of Statistics, The University of Chicago, Chicago, IL 60637, USA.
Department of Statistics, The University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
Am J Hum Genet. 2024 Aug 8;111(8):1750-1769. doi: 10.1016/j.ajhg.2024.06.010. Epub 2024 Jul 17.
Joint association analysis of multiple traits with multiple genetic variants can provide insight into genetic architecture and pleiotropy, improve trait prediction, and increase power for detecting association. Furthermore, some traits are naturally high-dimensional, e.g., images, networks, or longitudinally measured traits. Assessing significance for multitrait genetic association can be challenging, especially when the sample has population sub-structure and/or related individuals. Failure to adequately adjust for sample structure can lead to power loss and inflated type 1 error, and commonly used methods for assessing significance can work poorly with a large number of traits or be computationally slow. We developed JASPER, a fast, powerful, robust method for assessing significance of multitrait association with a set of genetic variants, in samples that have population sub-structure, admixture, and/or relatedness. In simulations, JASPER has higher power, better type 1 error control, and faster computation than existing methods, with the power and speed advantage of JASPER increasing with the number of traits. JASPER is potentially applicable to a wide range of association testing applications, including for multiple disease traits, expression traits, image-derived traits, and microbiome abundances. It allows for covariates, ascertainment, and rare variants and is robust to phenotype model misspecification. We apply JASPER to analyze gene expression in the Framingham Heart Study, where, compared to alternative approaches, JASPER finds more significant associations, including several that indicate pleiotropic effects, most of which replicate previous results, while others have not previously been reported. Our results demonstrate the promise of JASPER for powerful multitrait analysis in structured samples.
联合分析多个性状与多个遗传变异可以深入了解遗传结构和多效性,提高性状预测能力,并增加检测关联的效力。此外,一些性状是自然高维的,例如图像、网络或纵向测量的性状。评估多性状遗传关联的显著性具有挑战性,尤其是在样本存在群体亚结构和/或相关个体时。未能充分调整样本结构会导致效力损失和膨胀的第一类错误,并且常用的评估显著性的方法在性状数量较多或计算速度较慢时效果不佳。我们开发了 JASPER,这是一种快速、强大、稳健的方法,用于评估具有一组遗传变异的多性状关联的显著性,适用于具有群体亚结构、混合和/或亲缘关系的样本。在模拟中,JASPER 比现有方法具有更高的效力、更好的第一类错误控制和更快的计算速度,随着性状数量的增加,JASPER 的效力和速度优势也在增加。JASPER 具有广泛的关联测试应用潜力,包括多种疾病性状、表达性状、图像衍生性状和微生物组丰度。它允许协变量、确定和罕见变异,并且对表型模型的误指定具有鲁棒性。我们将 JASPER 应用于弗雷明汉心脏研究中的基因表达分析,与替代方法相比,JASPER 发现了更多显著的关联,包括几个表明多效性效应的关联,其中大多数与之前的结果一致,而其他关联则尚未报道。我们的结果表明 JASPER 有望在结构样本中进行强大的多性状分析。