Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States; Department of Environmental Chemistry and Technology, University of Wisconsin - Madison, 660 N Park St., Madison, WI 53706, United States.
Metab Eng. 2018 May;47:230-242. doi: 10.1016/j.ymben.2018.03.017. Epub 2018 Mar 27.
Cyanobacteria are photosynthetic microorganisms whose metabolism can be modified through genetic engineering for production of a wide variety of molecules directly from CO, light, and nutrients. Diverse molecules have been produced in small quantities by engineered cyanobacteria to demonstrate the feasibility of photosynthetic biorefineries. Consequently, there is interest in engineering these microorganisms to increase titer and productivity to meet industrial metrics. Unfortunately, differing experimental conditions and cultivation techniques confound comparisons of strains and metabolic engineering strategies. In this work, we discuss the factors governing photoautotrophic growth and demonstrate nutritionally replete conditions in which a model cyanobacterium can be grown to stationary phase with light as the sole limiting substrate. We introduce a mathematical framework for understanding the dynamics of growth and product secretion in light-limited cyanobacterial cultures. Using this framework, we demonstrate how cyanobacterial growth in differing experimental systems can be easily scaled by the volumetric photon delivery rate using the model organisms Synechococcus sp. strain PCC7002 and Synechococcus elongatus strain UTEX2973. We use this framework to predict scaled up growth and product secretion in 1L photobioreactors of two strains of Synechococcus PCC7002 engineered for production of l-lactate or L-lysine. The analytical framework developed in this work serves as a guide for future metabolic engineering studies of cyanobacteria to allow better comparison of experiments performed in different experimental systems and to further investigate the dynamics of growth and product secretion.
蓝藻是光合微生物,其代谢可以通过基因工程进行修改,以便直接从 CO、光和营养物质生产各种分子。通过工程化蓝藻已经少量生产了多种分子,以证明光合生物炼制的可行性。因此,人们有兴趣对这些微生物进行工程改造,以提高产量和生产力,以满足工业指标。不幸的是,不同的实验条件和培养技术使菌株和代谢工程策略的比较变得复杂。在这项工作中,我们讨论了影响光自养生长的因素,并展示了在营养充足的条件下,模型蓝藻可以用光作为唯一限制基质生长到静止期。我们引入了一个数学框架来理解光限制蓝藻培养物中生长和产物分泌的动力学。使用这个框架,我们展示了如何通过使用模型生物聚球藻 PCC7002 和集胞藻 UTEX2973 来轻松地根据体积光子传递率对不同实验系统中的蓝藻生长进行缩放。我们使用这个框架来预测两种聚球藻 PCC7002 工程菌株在 1L 光生物反应器中的放大生长和产物分泌,这两种菌株被设计用于生产 L-乳酸或 L-赖氨酸。本工作中开发的分析框架可作为未来蓝藻代谢工程研究的指南,以更好地比较不同实验系统中进行的实验,并进一步研究生长和产物分泌的动力学。