Suppr超能文献

定量描述泰弗尔等效声源源参数中的非期望平行分量。

Quantifying undesired parallel components in Thévenin-equivalent acoustic source parameters.

机构信息

Acoustic Technology, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 352, Kongens Lyngby, DK-2800, Denmark.

Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.

出版信息

J Acoust Soc Am. 2018 Mar;143(3):1491. doi: 10.1121/1.5026796.

Abstract

The calibration of an ear probe to determine its Thévenin-equivalent acoustic source parameters facilitates the measurement of ear-canal impedance and reflectance. Existing calibration error metrics, used to evaluate the quality of a calibration, are unable to reveal undesired parallel components in the source parameters. Such parallel components can result from, e.g., a leak in the ear tip or improperly accounting for evanescent modes, and introduce errors into subsequent measurements of impedance and reflectance. This paper proposes a set of additional error metrics that are capable of detecting such parallel components by examining the causality of the source admittance in the frequency domain and estimating the source pressure in the time domain. The proposed and existing error metrics are applied to four different calibrations using two existing calibration methods, representing typical use cases and introducing deliberate parallel components. The results demonstrate the capability of the proposed error metrics in identifying various undesired components in the source parameters that might otherwise go undetected.

摘要

耳探头的校准可以确定其 Thévenin 等效声源源参数,从而便于测量耳道阻抗和反射率。现有的校准误差指标可用于评估校准质量,但无法揭示源参数中不希望出现的并行分量。此类并行分量可能源于耳塞泄漏或未能正确考虑消逝模式等原因,并会在随后的阻抗和反射率测量中引入误差。本文提出了一组附加的误差指标,这些指标通过检查源导纳的因果关系以及在时域中估计源压力,能够检测到这种并行分量。使用两种现有的校准方法,对四个不同的校准分别应用了提出的和现有的误差指标,这些校准代表了典型的应用案例,并引入了故意的并行分量。结果表明,提出的误差指标能够识别源参数中各种可能未被发现的不希望的分量。

相似文献

1
Quantifying undesired parallel components in Thévenin-equivalent acoustic source parameters.
J Acoust Soc Am. 2018 Mar;143(3):1491. doi: 10.1121/1.5026796.
3
A comparison of ear-canal-reflectance measurement methods in an ear simulator.
J Acoust Soc Am. 2019 Aug;146(2):1350. doi: 10.1121/1.5123379.
5
Causality-constrained measurements of aural acoustic reflectance and reflection functions.
J Acoust Soc Am. 2020 Jan;147(1):300. doi: 10.1121/10.0000588.
6
Measurement of acoustic impedance and reflectance in the human ear canal.
J Acoust Soc Am. 1994 Jan;95(1):372-84. doi: 10.1121/1.408329.
7
Method to measure acoustic impedance and reflection coefficient.
J Acoust Soc Am. 1992 Jan;91(1):470-85. doi: 10.1121/1.402733.
9
Alternative ear-canal measures related to absorbance.
Ear Hear. 2013 Jul;34 Suppl 1(7 0 1):72S-77S. doi: 10.1097/AUD.0b013e31829c7229.

引用本文的文献

本文引用的文献

3
Comparison of nine methods to estimate ear-canal stimulus levels.
J Acoust Soc Am. 2014 Oct;136(4):1768-87. doi: 10.1121/1.4894787.
4
Power reflectance as a screening tool for the diagnosis of superior semicircular canal dehiscence.
Otol Neurotol. 2015 Jan;36(1):172-7. doi: 10.1097/MAO.0000000000000294.
5
Wideband aural acoustic absorbance predicts conductive hearing loss in children.
Int J Audiol. 2012 Dec;51(12):880-91. doi: 10.3109/14992027.2012.721936. Epub 2012 Oct 16.
6
Reflectance of acoustic horns and solution of the inverse problem.
J Acoust Soc Am. 2012 Mar;131(3):1863-73. doi: 10.1121/1.3681923.
7
Wideband acoustic transfer functions predict middle-ear effusion.
Laryngoscope. 2012 Apr;122(4):887-94. doi: 10.1002/lary.23182. Epub 2012 Feb 28.
8
Further assessment of forward pressure level for in situ calibration.
J Acoust Soc Am. 2011 Dec;130(6):3882-92. doi: 10.1121/1.3655878.
9
Inverse solution of ear-canal area function from reflectance.
J Acoust Soc Am. 2011 Dec;130(6):3873-81. doi: 10.1121/1.3654019.
10
Comparison of in-situ calibration methods for quantifying input to the middle ear.
J Acoust Soc Am. 2009 Dec;126(6):3114-24. doi: 10.1121/1.3243310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验