Suppr超能文献

消逝波在模拟耳道中的存在:实验验证与补偿方法。

Evanescent waves in simulated ear canals: Experimental demonstration and method for compensation.

机构信息

Department of Communication Sciences and Disorders and Knowles Hearing Center, Northwestern University, 2240 Campus Drive, Evanston, Illinois 60208, USA.

Acoustic Technology, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 352, Kongens Lyngby, DK-2800, Denmark.

出版信息

J Acoust Soc Am. 2018 Oct;144(4):2135. doi: 10.1121/1.5058683.

Abstract

Evanescent waves emerge from a small sound source that radiates into a waveguide with a larger cross-sectional area, but unlike planar waves, do not propagate far from the source. Evanescent waves thus contaminate in-ear calibration of acoustic stimuli. Measurements with an otoacoustic-emission (OAE) probe inserted at the entrance of long tubes of various diameters show a decline in the evanescent wave with distance from the source when advancing a probe tube through the OAE probe and into the long tube. The amplitude of the evanescent pressure increases with frequency and depends strongly on the diameter of the long tube. Modifying the shape of the aperture of the probe's sound source, thus effectively enlarging its diameter and redirecting acoustic flow, greatly reduced evanescent waves. The reduction in evanescent-wave pressure was observed in calibration cavities used to determine the Thévenin-equivalent source pressure and impedance of the probe. Errors in source calibrations were considerably larger in the unmodified configuration. An alternative method is proposed for calculation of acoustic source parameters that models the evanescent-wave pressure and reduces its influence on the calculation. This reduction greatly improves the quality of source calibrations, which should improve the accuracy of ear-canal impedance measurements and related quantities.

摘要

消逝波是从小声源辐射到具有较大横截面的波导中产生的,但与平面波不同,它们不会从声源传播很远。因此,消逝波会干扰入耳式校准声学刺激。使用插入在不同直径长管入口处的耳声发射 (OAE) 探头进行的测量表明,当探头管通过 OAE 探头推进到长管中时,随着与声源距离的增加,消逝波会衰减。消逝压力的幅度随频率增加而增加,并且强烈依赖于长管的直径。通过改变探头声源的孔径形状,从而有效地增大其直径并重新引导声流,可以大大减少消逝波。在用于确定探头的 Thévenin 等效源压力和阻抗的校准腔中观察到消逝波压力的降低。在未修改的配置中,源校准的误差要大得多。提出了一种替代方法来计算声学源参数,该方法模拟了消逝波压力并降低了其对计算的影响。这种减少极大地提高了源校准的质量,这应该会提高耳道阻抗测量和相关量的准确性。

相似文献

2
The effect of the evanescent wave upon acoustic measurements in the human ear canal.
J Acoust Soc Am. 1997 Apr;101(4):2164-75. doi: 10.1121/1.418244.
3
Comparison of nine methods to estimate ear-canal stimulus levels.
J Acoust Soc Am. 2014 Oct;136(4):1768-87. doi: 10.1121/1.4894787.
5
Compensating for ear-canal acoustics when measuring otoacoustic emissions.
J Acoust Soc Am. 2017 Jan;141(1):515. doi: 10.1121/1.4973618.
6
Further assessment of forward pressure level for in situ calibration.
J Acoust Soc Am. 2011 Dec;130(6):3882-92. doi: 10.1121/1.3655878.
7
On the calculation of reflectance in non-uniform ear canals.
J Acoust Soc Am. 2019 Aug;146(2):1464. doi: 10.1121/1.5124000.
8
Causality-constrained measurements of aural acoustic reflectance and reflection functions.
J Acoust Soc Am. 2020 Jan;147(1):300. doi: 10.1121/10.0000588.
9
A comparison of ear-canal-reflectance measurement methods in an ear simulator.
J Acoust Soc Am. 2019 Aug;146(2):1350. doi: 10.1121/1.5123379.
10
Quantifying undesired parallel components in Thévenin-equivalent acoustic source parameters.
J Acoust Soc Am. 2018 Mar;143(3):1491. doi: 10.1121/1.5026796.

引用本文的文献

2
On the calculation of reflectance in non-uniform ear canals.
J Acoust Soc Am. 2019 Aug;146(2):1464. doi: 10.1121/1.5124000.
3
A comparison of ear-canal-reflectance measurement methods in an ear simulator.
J Acoust Soc Am. 2019 Aug;146(2):1350. doi: 10.1121/1.5123379.
4
Age Effects on Cochlear Reflectance in Adults.
Ear Hear. 2020 Mar/Apr;41(2):451-460. doi: 10.1097/AUD.0000000000000772.

本文引用的文献

1
Quantifying undesired parallel components in Thévenin-equivalent acoustic source parameters.
J Acoust Soc Am. 2018 Mar;143(3):1491. doi: 10.1121/1.5026796.
4
The analysis of plane discontinuities in offset cylindrical waveguides.
J Acoust Soc Am. 2015 Jun;137(6):3127-38. doi: 10.1121/1.4921551.
5
Comparison of nine methods to estimate ear-canal stimulus levels.
J Acoust Soc Am. 2014 Oct;136(4):1768-87. doi: 10.1121/1.4894787.
7
Further assessment of forward pressure level for in situ calibration.
J Acoust Soc Am. 2011 Dec;130(6):3882-92. doi: 10.1121/1.3655878.
8
Comparison of in-situ calibration methods for quantifying input to the middle ear.
J Acoust Soc Am. 2009 Dec;126(6):3114-24. doi: 10.1121/1.3243310.
10
Acoustic impedance measurements-correction for probe geometry mismatch.
J Acoust Soc Am. 2005 May;117(5):2889-95. doi: 10.1121/1.1879192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验