Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
J Chem Phys. 2018 Mar 28;148(12):123315. doi: 10.1063/1.5004606.
Bio-macromolecules carry out complicated functions through structural changes. To understand their mechanism of action, the structure of each step has to be characterized. While classical structural biology techniques allow the characterization of a few "structural snapshots" along the enzymatic cycle (usually of stable conformations), they do not cover all (and often fast interconverting) structures in the ensemble, where each may play an important functional role. Recently, several groups have demonstrated that structures of different conformations in solution could be solved by measuring multiple distances between different pairs of residues using single-molecule Förster resonance energy transfer (smFRET) and using them as constrains for hybrid/integrative structural modeling. However, this approach is limited in cases where the conformational dynamics is faster than the technique's temporal resolution. In this study, we combine existing tools that elucidate sub-millisecond conformational dynamics together with hybrid/integrative structural modeling to study the conformational states of the transcription bubble in the bacterial RNA polymerase-promoter open complex (RPo). We measured microsecond alternating laser excitation-smFRET of differently labeled lacCONS promoter dsDNA constructs. We used a combination of burst variance analysis, photon-by-photon hidden Markov modeling, and the FRET-restrained positioning and screening approach to identify two conformational states for RPo. The experimentally derived distances of one conformational state match the known crystal structure of bacterial RPo. The experimentally derived distances of the other conformational state have characteristics of a scrunched RPo. These findings support the hypothesis that sub-millisecond dynamics in the transcription bubble are responsible for transcription start site selection.
生物大分子通过结构变化执行复杂的功能。为了了解它们的作用机制,必须对每个步骤的结构进行表征。虽然经典的结构生物学技术允许对酶循环中的几个“结构快照”进行表征(通常是稳定构象),但它们不能涵盖集合中的所有(通常是快速相互转换的)结构,每个结构都可能发挥重要的功能作用。最近,有几个小组已经证明,通过使用单分子Förster 共振能量转移(smFRET)测量不同残基对之间的多个距离,并将其用作混合/综合结构建模的约束,可以解决溶液中不同构象的结构。然而,这种方法在构象动力学比技术的时间分辨率更快的情况下受到限制。在这项研究中,我们将阐明亚毫秒构象动力学的现有工具与混合/综合结构建模相结合,以研究细菌 RNA 聚合酶-启动子开放复合物(RPo)中转录泡的构象状态。我们测量了不同标记的 lacCONS 启动子 dsDNA 构建体的微秒交替激光激发-smFRET。我们结合了突发方差分析、逐光子隐马尔可夫建模以及 FRET 约束定位和筛选方法,以识别 RPo 的两种构象状态。一种构象状态的实验推导距离与已知的细菌 RPo 晶体结构匹配。另一种构象状态的实验推导距离具有卷曲 RPo 的特征。这些发现支持了这样的假设,即转录泡中的亚毫秒动力学负责转录起始位点的选择。