Faculty of Infectious and Tropical diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
Institute of Physics of São Carlos, University of São Paulo, São Carlos, Brazil.
PLoS Negl Trop Dis. 2018 Apr 2;12(4):e0006388. doi: 10.1371/journal.pntd.0006388. eCollection 2018 Apr.
Infection with Trypanosoma cruzi causes Chagas disease, a major public health problem throughout Latin America. There is no vaccine and the only drugs have severe side effects. Efforts to generate new therapies are hampered by limitations in our understanding of parasite biology and disease pathogenesis. Studies are compromised by the complexity of the disease, the long-term nature of the infection, and the fact that parasites are barely detectable during the chronic stage. In addition, functional dissection of T. cruzi biology has been restricted by the limited flexibility of the genetic manipulation technology applicable to this parasite.
METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe two technical innovations, which will allow the role of the parasite in disease progression to be better assessed. First, we generated a T. cruzi reporter strain that expresses a fusion protein comprising red-shifted luciferase and green fluorescent protein domains. Bioluminescence allows the kinetics of infection to be followed within a single animal, and specific foci of infection to be pinpointed in excised tissues. Fluorescence can then be used to visualise individual parasites in tissue sections to study host-parasite interactions at a cellular level. Using this strategy, we have been routinely able to find individual parasites within chronically infected murine tissues for the first time. The second advance is the incorporation of a streamlined CRISPR/Cas9 functionality into this reporter strain that can facilitate genome editing using a PCR-based approach that does not require DNA cloning. This system allows the rapid generation of null mutants and fluorescently tagged parasites in a background where the in vivo phenotype can be rapidly assessed.
CONCLUSIONS/SIGNIFICANCE: The techniques described here will have multiple applications for studying aspects of T. cruzi biology and Chagas disease pathogenesis previously inaccessible to conventional approaches. The reagents and cell lines have been generated as a community resource and are freely available on request.
克氏锥虫感染会导致恰加斯病,这是拉丁美洲一个主要的公共卫生问题。目前尚无疫苗,唯一的药物有严重的副作用。由于对寄生虫生物学和疾病发病机制的了解有限,新疗法的研究受到阻碍。由于疾病的复杂性、感染的长期性以及在慢性期几乎无法检测到寄生虫等因素,研究受到了影响。此外,由于适用于这种寄生虫的遗传操作技术的灵活性有限,对克氏锥虫生物学的功能剖析也受到了限制。
方法/主要发现:在这里,我们描述了两项技术创新,这将使寄生虫在疾病进展中的作用得到更好的评估。首先,我们生成了一种克氏锥虫报告株,该报告株表达由红移荧光素酶和绿色荧光蛋白结构域组成的融合蛋白。生物发光允许在单个动物体内跟踪感染的动力学,并在切除的组织中精确定位感染的特定焦点。然后可以使用荧光来观察组织切片中的单个寄生虫,以在细胞水平上研究宿主-寄生虫相互作用。使用这种策略,我们首次能够在慢性感染的鼠组织中常规找到单个寄生虫。第二项进展是将简化的 CRISPR/Cas9 功能纳入该报告株中,该功能可以使用基于 PCR 的方法进行基因组编辑,而无需 DNA 克隆。该系统允许在快速评估体内表型的背景下,快速生成缺失突变体和荧光标记寄生虫。
结论/意义:这里描述的技术将在研究克氏锥虫生物学和恰加斯病发病机制的多个方面具有广泛的应用,这些方面以前是传统方法无法企及的。该试剂和细胞系已作为社区资源生成,并可根据要求免费提供。