Department of Ophthalmology and Eye Hospital, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany.
Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany.
Prog Retin Eye Res. 2018 Sep;66:49-84. doi: 10.1016/j.preteyeres.2018.03.006. Epub 2018 Mar 30.
A fovea is a pitted invagination in the inner retinal tissue (fovea interna) that overlies an area of photoreceptors specialized for high acuity vision (fovea externa). Although the shape of the vertebrate fovea varies considerably among the species, there are two basic types. The retina of many predatory fish, reptilians, and birds possess one (or two) convexiclivate fovea(s), while the retina of higher primates contains a concaviclivate fovea. By refraction of the incoming light, the convexiclivate fovea may function as image enlarger, focus indicator, and movement detector. By centrifugal displacement of the inner retinal layers, which increases the transparency of the central foveal tissue (the foveola), the primate fovea interna improves the quality of the image received by the central photoreceptors. In this review, we summarize ‒ with the focus on Müller cells of the human and macaque fovea ‒ data regarding the structure of the primate fovea, discuss various aspects of the optical function of the fovea, and propose a model of foveal development. The "Müller cell cone" of the foveola comprises specialized Müller cells which do not support neuronal activity but may serve optical and structural functions. In addition to the "Müller cell cone", structural stabilization of the foveal morphology may be provided by the 'z-shaped' Müller cells of the fovea walls, via exerting tractional forces onto Henle fibers. The spatial distribution of glial fibrillary acidic protein may suggest that the foveola and the Henle fiber layer are subjects to mechanical stress. During development, the foveal pit is proposed to be formed by a vertical contraction of the centralmost Müller cells. After widening of the foveal pit likely mediated by retracting astrocytes, Henle fibers are formed by horizontal contraction of Müller cell processes in the outer plexiform layer and the centripetal displacement of photoreceptors. A better understanding of the molecular, cellular, and mechanical factors involved in the developmental morphogenesis and the structural stabilization of the fovea may help to explain the (patho-) genesis of foveal hypoplasia and macular holes.
中央凹是视网膜内层(内凹)的凹陷,覆盖在专门用于高视力的感光器区域(外凹)上方。尽管脊椎动物中央凹的形状在物种之间有很大差异,但有两种基本类型。许多掠食性鱼类、爬行动物和鸟类的视网膜具有一个(或两个)凸凹中央凹,而高等灵长类动物的视网膜则包含一个凹凹中央凹。通过入射光的折射,凸凹中央凹可能起到图像放大、焦点指示和运动检测的作用。通过内视网膜层的向心移位,增加中央凹组织的透明度(中央凹窝),灵长类动物的内凹改善了中央感光器接收的图像质量。在这篇综述中,我们重点关注人类和猕猴中央凹的 Müller 细胞,总结了关于灵长类动物中央凹结构的数据,讨论了中央凹光学功能的各个方面,并提出了中央凹发育的模型。中央凹窝的“Müller 细胞锥”由不支持神经元活动但可能具有光学和结构功能的特化 Müller 细胞组成。除了“Müller 细胞锥”之外,中央凹壁的“Z 形”Müller 细胞可能通过对 Henle 纤维施加牵引力,为中央凹形态的结构稳定提供支持。神经胶质纤维酸性蛋白的空间分布表明,中央凹窝和 Henle 纤维层可能受到机械应力的影响。在发育过程中,中央凹凹坑被认为是由最中央 Müller 细胞的垂直收缩形成的。在中央凹坑扩大后,可能通过缩回的星形胶质细胞介导,Henle 纤维是通过 Müller 细胞在外丛状层中的水平收缩和感光器的向心移位形成的。更好地理解参与中央凹发育形态发生和结构稳定的分子、细胞和机械因素,可能有助于解释中央凹发育不良和黄斑裂孔的(病理)发生机制。