Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.
Department of Microbiology, New York University School of Medicine, New York, New York, USA.
J Bacteriol. 2018 Jul 10;200(15). doi: 10.1128/JB.00005-18. Print 2018 Aug 1.
In , high intracellular cyclic di-GMP (c-di-GMP) concentration are associated with a biofilm lifestyle, while low intracellular c-di-GMP concentrations are associated with a motile lifestyle. c-di-GMP also regulates other behaviors, such as acetoin production and type II secretion; however, the extent of phenotypes regulated by c-di-GMP is not fully understood. We recently determined that the sequence upstream of the DNA repair gene encoding 3-methyladenine glycosylase () was positively induced by c-di-GMP, suggesting that this signaling system might impact DNA repair pathways. We identified a DNA region upstream of that is required for transcriptional induction by c-di-GMP. We further showed that c-di-GMP induction of expression was dependent on the c-di-GMP-dependent biofilm regulators VpsT and VpsR. binding assays and heterologous host expression studies show that VpsT acts directly at the promoter in response to c-di-GMP to induce expression. Last, we determined that strains with high c-di-GMP concentrations are more tolerant of the DNA-damaging agent methyl methanesulfonate. Our results indicate that the regulatory network of c-di-GMP in extends beyond biofilm formation and motility to regulate DNA repair through the VpsR/VpsT c-di-GMP-dependent cascade. is a prominent human pathogen that is currently causing a pandemic outbreak in Haiti, Yemen, and Ethiopia. The second messenger molecule cyclic di-GMP (c-di-GMP) mediates the transitions in between a sessile biofilm-forming state and a motile lifestyle, both of which are important during environmental persistence and human infections. Here, we report that in c-di-GMP also controls DNA repair. We elucidate the regulatory pathway by which c-di-GMP increases DNA repair, allowing this bacterium to tolerate high concentrations of mutagens at high intracellular levels of c-di-GMP. Our work suggests that DNA repair and biofilm formation may be linked in .
在 中,高细胞内环二鸟苷酸(c-di-GMP)浓度与生物膜生活方式相关,而低细胞内 c-di-GMP 浓度与运动生活方式相关。c-di-GMP 还调节其他行为,如乙酰丁酮的产生和 II 型分泌;然而,c-di-GMP 调节的表型的程度尚不完全清楚。我们最近确定,编码 3-甲基腺嘌呤糖苷酶的 DNA 修复基因上游的序列被 c-di-GMP 正向诱导,表明该信号系统可能影响 DNA 修复途径。我们鉴定了一个 c-di-GMP 正向诱导的 DNA 区域,该区域位于编码 3-甲基腺嘌呤糖苷酶的基因上游。我们进一步表明,c-di-GMP 诱导 的表达依赖于 c-di-GMP 依赖性生物膜调节因子 VpsT 和 VpsR。c-di-GMP 诱导的 结合实验和异源宿主表达研究表明,VpsT 直接在 c-di-GMP 响应下作用于 启动子以诱导 表达。最后,我们确定高 c-di-GMP 浓度的菌株对 DNA 损伤剂甲基甲磺酸甲烷更耐受。我们的结果表明, 中 c-di-GMP 的调控网络不仅延伸到生物膜形成和运动性,还通过 VpsR/VpsT c-di-GMP 依赖性级联调节 DNA 修复。是一种重要的人类病原体,目前在海地、也门和埃塞俄比亚引发了大流行。第二信使分子环二鸟苷酸(c-di-GMP)介导 从静止的生物膜形成状态到运动生活方式的转变,这两者在 环境持久性和人类感染期间都很重要。在这里,我们报告 c-di-GMP 还控制 DNA 修复。我们阐明了 c-di-GMP 增加 DNA 修复的调控途径,使该细菌能够在高细胞内 c-di-GMP 浓度下耐受高浓度的诱变剂。我们的工作表明,在 中,DNA 修复和生物膜形成可能是相关的。