Si Jiajia, Bao Yiliang, Chen Fengling, Wang Yue, Zeng Meimei, He Nongyue, Chen Zhu, Guo Yuan
Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, No. 88 West Taishan Road, Zhuzhou 412007, Hunan, China.
Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou 412007, Hunan, China.
Eur Heart J Digit Health. 2024 Nov 27;6(1):82-95. doi: 10.1093/ehjdh/ztae092. eCollection 2025 Jan.
The electrocardiogram (ECG) is the primary method for diagnosing atrial fibrillation (AF), but interpreting ECGs can be time-consuming and labour-intensive, which deserves more exploration.
We collected ECG data from 6590 patients as YY2023, classified as Normal, AF, and Other. Convolutional Neural Network (CNN), bidirectional Long Short-Term Memory (BiLSTM), and Attention construct the AF recognition model CNN BiLSTM Attention-Atrial Fibrillation (CLA-AF). The generalization ability of the model is validated on public datasets CPSC2018, PhysioNet2017, and PTB-XL, and we explored the performance of oversampling, resampling, and hybrid datasets. Finally, additional PhysioNet2021 was added to validate the robustness and applicability in different clinical settings. We employed the SHapley Additive exPlanations (SHAP) method to interpret the model's predictions. The F1-score, Precision, and area under the ROC curve (AUC) of the CLA-AF model on YY2023 are 0.956, 0.970, and 1.00, respectively. Similarly, the AUC on CPSC2018, PhysioNet2017, and PTB-XL reached above 0.95, demonstrating its strong generalization ability. After oversampling PhysioNet2017, F1-score and Recall improved by 0.156 and 0.260. Generalization ability varied with sampling frequency. The model trained from the hybrid dataset has the most robust generalization ability, achieving an AUC of 0.96 or more. The AUC of PhysioNet2021 is 1.00, which proves the applicability of CLA-AF. The SHAP values visualization results demonstrate that the model's interpretation of AF aligns with the diagnostic criteria of AF.
The CLA-AF model demonstrates a high accuracy in recognizing AF from ECG, exhibiting remarkable applicability and robustness in diverse clinical settings.
心电图(ECG)是诊断心房颤动(AF)的主要方法,但解读心电图可能耗时且费力,值得进一步探索。
我们收集了6590例患者的心电图数据作为YY2023数据集,分为正常、房颤和其他类别。利用卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制构建房颤识别模型CNN BiLSTM注意力-心房颤动(CLA-AF)。该模型的泛化能力在公共数据集CPSC2018、PhysioNet2017和PTB-XL上得到验证,我们还探索了过采样、重采样和混合数据集的性能。最后,增加了额外的PhysioNet2021数据集以验证其在不同临床环境中的稳健性和适用性。我们采用SHapley值相加解释(SHAP)方法来解释模型的预测结果。CLA-AF模型在YY2023数据集上的F1分数、精确率和ROC曲线下面积(AUC)分别为0.956、0.970和1.00。同样,在CPSC2018、PhysioNet2017和PTB-XL数据集上的AUC均达到0.95以上,表明其具有很强的泛化能力。对PhysioNet2017数据集进行过采样后,F1分数和召回率分别提高了0.156和0.260。泛化能力随采样频率而变化。从混合数据集训练的模型具有最稳健的泛化能力,AUC达到0.96或更高。PhysioNet2021数据集的AUC为1.00,证明了CLA-AF模型的适用性。SHAP值可视化结果表明,该模型对房颤的解释与房颤的诊断标准一致。
CLA-AF模型在从心电图中识别房颤方面具有较高的准确性,在不同临床环境中表现出显著的适用性和稳健性。