Department of Information Technology, National Institute of Technology, Raipur, India.
Phys Eng Sci Med. 2021 Mar;44(1):173-182. doi: 10.1007/s13246-020-00965-1. Epub 2021 Jan 6.
Early detection of cardiac arrhythmia is needed to reduce mortality. Automatically detecting the cardiac arrhythmias is a very challenging task. In this paper, a new deep convolutional encoded feature (CEF) based on non-linear compression composition is applied to diminish the ECG signal segment size. Bidirectional long short-term memory (BLSTM) network classifier has been proposed to detect arrhythmias from the ECG signal, which is encoded by the convolutional encoder. These encoded features are used as the input to BLSTM network classifier. For performance comparison, three other classifiers, namely unidirectional long short-term memory (ULSTM) network, gated recurrent Unit (GRU) and multilayer perceptron, are designed. The experimental studies detect and classify arrhythmias present in the MIT-BIH arrhythmia database into five different heartbeat classes. These heartbeat classes are normal (N), left bundle branch block (L), right bundle branch block(R), paced (P) and premature ventricular contraction (V). Evaluation of performance and system efficiency has been done with the help of four different types of evaluation criteria which are overall accuracy, precision, recall, and F-score. The experimental results indicate that the BLSTM network has achieved an overall accuracy of 99.52% with the processing time of only 6.043 s.
早期发现心脏心律失常可降低死亡率。自动检测心脏心律失常是一项极具挑战性的任务。本文提出了一种新的基于非线性压缩组合的深度卷积编码特征(CEF),用于减小 ECG 信号段的大小。双向长短期记忆(BLSTM)网络分类器被提出用于从 ECG 信号中检测心律失常,该信号由卷积编码器进行编码。这些编码特征被用作 BLSTM 网络分类器的输入。为了进行性能比较,还设计了另外三个分类器,即单向长短期记忆(ULSTM)网络、门控循环单元(GRU)和多层感知器。实验研究检测并分类 MIT-BIH 心律失常数据库中的心律失常,分为五种不同的心跳类型:正常(N)、左束支传导阻滞(L)、右束支传导阻滞(R)、起搏(P)和室性早搏(V)。通过使用四种不同类型的评估标准(整体准确性、精度、召回率和 F 分数)来评估性能和系统效率。实验结果表明,BLSTM 网络的整体准确性达到 99.52%,处理时间仅为 6.043s。