Department of Radiology, Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, USA.
Department of Neurology, Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA.
J Alzheimers Dis. 2018;63(1):217-225. doi: 10.3233/JAD-170932.
Multi-atlas segmentation, a popular technique implemented in the Automated Segmentation of Hippocampal Subfields (ASHS) software, utilizes multiple expert-labelled images ("atlases") to delineate medial temporal lobe substructures. This multi-atlas method is increasingly being employed in early Alzheimer's disease (AD) research, it is therefore becoming important to know how the construction of the atlas set in terms of proportions of controls and patients with mild cognitive impairment (MCI) and/or AD affects segmentation accuracy.
To evaluate whether the proportion of controls in the training sets affects the segmentation accuracy of both controls and patients with MCI and/or early AD at 3T and 7T.
We performed cross-validation experiments varying the proportion of control subjects in the training set, ranging from a patient-only to a control-only set. Segmentation accuracy of the test set was evaluated by the Dice similarity coeffiecient (DSC). A two-stage statistical analysis was applied to determine whether atlas composition is linked to segmentation accuracy in control subjects and patients, for 3T and 7T.
The different atlas compositions did not significantly affect segmentation accuracy at 3T and for patients at 7T. For controls at 7T, including more control subjects in the training set significantly improves the segmentation accuracy, but only marginally, with the maximum of 0.0003 DSC improvement per percent increment of control subject in the training set.
ASHS is robust in this study, and the results indicate that future studies investigating hippocampal subfields in early AD populations can be flexible in the selection of their atlas compositions.
多图谱分割是一种在自动海马亚区分割(ASHS)软件中广泛应用的技术,它利用多个专家标记的图像(“图谱”)来描绘内侧颞叶亚结构。这种多图谱方法在早期阿尔茨海默病(AD)研究中越来越多地被采用,因此,了解图谱集的构建方式,包括控制组和轻度认知障碍(MCI)和/或 AD 患者的比例,如何影响分割准确性变得非常重要。
评估训练集中控制组的比例是否会影响 3T 和 7T 时 MCI 和/或早期 AD 患者的控制组和患者的分割准确性。
我们通过交叉验证实验,改变训练集中的控制组比例,从仅患者组到仅控制组,来评估测试集的分割准确性。通过 Dice 相似系数(DSC)评估。应用两阶段统计分析来确定图谱组成与控制组和患者的分割准确性之间是否存在关联,适用于 3T 和 7T。
不同的图谱组成在 3T 时和 7T 时的患者中并没有显著影响分割准确性。对于 7T 时的控制组,在训练集中包含更多的控制组可以显著提高分割准确性,但仅略有提高,在训练集中每增加一个控制组,DSC 最多可提高 0.0003。
在这项研究中,ASHS 具有很强的稳健性,结果表明,未来研究可以灵活选择图谱组成,研究早期 AD 人群的海马亚区。