Kiranmai Kurnool, Lokanadha Rao Gunupuru, Pandurangaiah Merum, Nareshkumar Ambekar, Amaranatha Reddy Vennapusa, Lokesh Uppala, Venkatesh Boya, Anthony Johnson A M, Sudhakar Chinta
Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India.
Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada.
Front Plant Sci. 2018 Mar 16;9:346. doi: 10.3389/fpls.2018.00346. eCollection 2018.
Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that gene is highly up-regulated under drought stress conditions and therefore isolated a new gene from a drought-adapted horsegram ( Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient 3-YFP revealed its nuclear localization. Overexpression of TF gene in groundnut ( L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing showed less accumulation of malondialdehyde, hydrogen peroxide (HO), and superoxide anion (O), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related , and genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that may serve as a new putative candidate gene for the improvement of stress resistance in plants.
干旱胁迫对花生的生长、水分关系、光合作用和产量具有不利影响。WRKY转录因子是植物特有的转录因子,可调控多个下游胁迫响应基因,在植物生物和非生物胁迫响应中发挥重要作用。我们发现[基因名称]基因在干旱胁迫条件下高度上调,因此从一种适应干旱的豆科植物([植物拉丁学名])中分离出一个新的[基因名称]基因。保守结构域研究表明,该基因编码的蛋白质包含两个WRKY结构域和两个C2H2锌指基序的高度保守区域。瞬时3-YFP融合蛋白定位研究显示其定位于细胞核。与野生型(WT)植株相比,花生([花生拉丁学名])中[转录因子基因名称]转录因子基因的过表达显示出对干旱胁迫的耐受性增强。在施加10天干旱胁迫后,转基因花生植株比WT植株表现出更轻且延迟的萎蔫症状。在干旱胁迫下,表达[转录因子基因名称]的转基因花生植株丙二醛、过氧化氢(H₂O₂)和超氧阴离子(O₂⁻)的积累较少,同时游离脯氨酸、总可溶性糖含量以及抗氧化酶活性均高于WT植株。此外,一系列与胁迫相关的[基因名称1]、[基因名称2]和[基因名称3]基因在转基因花生植株中上调表达。该研究表明,定位于细胞核的[转录因子基因名称]转录因子调节胁迫响应基因的表达和活性氧清除酶的活性,从而提高花生的耐旱性。我们得出结论,[转录因子基因名称]可能作为提高植物抗逆性的一个新的潜在候选基因。