Imec, Kapeldreef 75, 3001 Leuven, Belgium.
Nanoscale. 2018 Apr 19;10(15):7058-7066. doi: 10.1039/c8nr00186c.
Semiconductor heterostructures are at the heart of most nanoelectronic and photonic devices such as advanced transistors, lasers, light emitting diodes, optical modulators and photo-detectors. However, the performance and reliability of the respective devices are often limited by the presence of crystalline defects which arise from plastic relaxation of misfit strain present in these heterogeneous systems. To date, characterizing the nature and distribution of such defects in 3D nanoscale devices precisely and non-destructively remains a critical metrology challenge. In this paper we demonstrate that electron channeling contrast imaging (ECCI) is capable of analyzing individual dislocations and stacking faults in confined 3D nanostructures, thereby fulfilling the aforementioned requirements. For this purpose we imaged the intensity of electrons backscattered from the sample under test under controlled diffraction conditions using a scanning electron microscope (SEM). In contrast to transmission electron microscopy (TEM) analysis, no electron transparent specimens need to be prepared. This enables a significant reduction of the detection limit (i.e. lowest defect density that can be assessed) as our approach facilitates the analysis of large sampling volumes, thereby providing excellent statistics. We applied the methodology to SiGe nanostructures grown by selective area epitaxy to study in detail how the nature and distribution of crystalline defects are affected by the dimensions of the structure. By comparing our observations with the results obtained using X-ray diffraction, TEM and chemical defect etching, we could verify the validity of the method. Our findings firmly establish that ECCI must be considered the method of choice for analyzing the crystalline quality of 3D semiconductor heterostructures with excellent precision even at low defect densities. As such, the technique aids in better understanding of strain relaxation and defect formation mechanisms at the nanoscale and, moreover, facilitates the development and fabrication of next generation nanoelectronic and photonic devices.
半导体异质结构是大多数纳米电子学和光子学器件的核心,如先进的晶体管、激光、发光二极管、光调制器和光电探测器。然而,这些异质系统中存在的失配应变的塑性弛豫导致晶体缺陷的存在,这常常限制了各自器件的性能和可靠性。迄今为止,精确和非破坏性地描述 3D 纳米器件中这种缺陷的性质和分布仍然是一个关键的计量学挑战。在本文中,我们证明了电子沟道对比成像(ECCI)能够分析受限 3D 纳米结构中的单个位错和堆叠层错,从而满足了上述要求。为此,我们在扫描电子显微镜(SEM)下使用受控衍射条件分析了从测试样品反向散射的电子的强度。与透射电子显微镜(TEM)分析不同,不需要制备电子透明的样品。这大大降低了检测极限(即可以评估的最低缺陷密度),因为我们的方法便于分析大的采样体积,从而提供了极好的统计数据。我们将该方法应用于通过选择区域外延生长的 SiGe 纳米结构,以详细研究晶体缺陷的性质和分布如何受到结构尺寸的影响。通过将我们的观察结果与使用 X 射线衍射、TEM 和化学缺陷蚀刻获得的结果进行比较,我们可以验证该方法的有效性。我们的研究结果确立了 ECCI 必须被视为分析具有优异精度的 3D 半导体异质结构晶体质量的首选方法,即使在低缺陷密度下也是如此。因此,该技术有助于更好地理解纳米尺度下的应变弛豫和缺陷形成机制,并且有助于下一代纳米电子学和光子学器件的开发和制造。