Suppr超能文献

利用血流动力学模式的多元分类提高近红外光谱数据分析:理论公式和验证。

Improving the analysis of near-infrared spectroscopy data with multivariate classification of hemodynamic patterns: a theoretical formulation and validation.

机构信息

NIRx Medizintechnik GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany. Neurotechnology Group, Technische Universität Berlin, Marchstraße 23, 10587 Berlin, Germany.

出版信息

J Neural Eng. 2018 Aug;15(4):045001. doi: 10.1088/1741-2552/aabb7c. Epub 2018 Apr 4.

Abstract

OBJECTIVE

The statistical analysis of functional near infrared spectroscopy (fNIRS) data based on the general linear model (GLM) is often made difficult by serial correlations, high inter-subject variability of the hemodynamic response, and the presence of motion artifacts. In this work we propose to extract information on the pattern of hemodynamic activations without using any a priori model for the data, by classifying the channels as 'active' or 'not active' with a multivariate classifier based on linear discriminant analysis (LDA).

APPROACH

This work is developed in two steps. First we compared the performance of the two analyses, using a synthetic approach in which simulated hemodynamic activations were combined with either simulated or real resting-state fNIRS data. This procedure allowed for exact quantification of the classification accuracies of GLM and LDA. In the case of real resting-state data, the correlations between classification accuracy and demographic characteristics were investigated by means of a Linear Mixed Model. In the second step, to further characterize the reliability of the newly proposed analysis method, we conducted an experiment in which participants had to perform a simple motor task and data were analyzed with the LDA-based classifier as well as with the standard GLM analysis.

MAIN RESULTS

The results of the simulation study show that the LDA-based method achieves higher classification accuracies than the GLM analysis, and that the LDA results are more uniform across different subjects and, in contrast to the accuracies achieved by the GLM analysis, have no significant correlations with any of the demographic characteristics. Findings from the real-data experiment are consistent with the results of the real-plus-simulation study, in that the GLM-analysis results show greater inter-subject variability than do the corresponding LDA results.

SIGNIFICANCE

The results obtained suggest that the outcome of GLM analysis is highly vulnerable to violations of theoretical assumptions, and that therefore a data-driven approach such as that provided by the proposed LDA-based method is to be favored.

摘要

目的

基于广义线性模型(GLM)的功能近红外光谱(fNIRS)数据分析通常受到序列相关性、血液动力学响应的个体间可变性以及运动伪影的影响。在这项工作中,我们提出了一种不使用任何数据先验模型的方法,通过使用基于线性判别分析(LDA)的多元分类器将通道分类为“活动”或“非活动”,从而提取血液动力学激活模式的信息。

方法

这项工作分两步进行。首先,我们比较了两种分析方法的性能,使用一种合成方法,其中模拟血液动力学激活与模拟或真实静息状态 fNIRS 数据相结合。这种方法可以准确地量化 GLM 和 LDA 的分类准确性。在真实静息状态数据的情况下,通过线性混合模型研究分类准确性与人口统计学特征之间的相关性。在第二步中,为了进一步描述新提出的分析方法的可靠性,我们进行了一项实验,其中参与者必须执行一项简单的运动任务,并用基于 LDA 的分类器以及标准 GLM 分析对数据进行分析。

主要结果

模拟研究的结果表明,基于 LDA 的方法比 GLM 分析达到更高的分类准确性,并且 LDA 结果在不同个体之间更均匀,与 GLM 分析的准确性不同,与任何人口统计学特征都没有显著相关性。真实数据实验的结果与真实加模拟研究的结果一致,即 GLM 分析的结果比相应的 LDA 结果显示出更大的个体间变异性。

意义

所得结果表明,GLM 分析的结果极易受到违反理论假设的影响,因此,应倾向于使用基于 LDA 的建议方法等数据驱动方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验