Department of Developmental and Social Psychology, University of Padua, Via Venezia, 8, 35131 Padua, Italy.
Padova Neuroscience Center, 35131 Padua, Italy.
Sensors (Basel). 2024 Jun 26;24(13):4161. doi: 10.3390/s24134161.
Functional Near Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) are commonly employed neuroimaging methods in developmental neuroscience. Since they offer complementary strengths and their simultaneous recording is relatively easy, combining them is highly desirable. However, to date, very few infant studies have been conducted with NIRS-EEG, partly because analyzing and interpreting multimodal data is challenging. In this work, we propose a framework to carry out a multivariate pattern analysis that uses an NIRS-EEG feature matrix, obtained by selecting EEG trials presented within larger NIRS blocks, and combining the corresponding features. Importantly, this classifier is intended to be sensitive enough to apply to individual-level, and not group-level data. We tested the classifier on NIRS-EEG data acquired from five newborn infants who were listening to human speech and monkey vocalizations. We evaluated how accurately the model classified stimuli when applied to EEG data alone, NIRS data alone, or combined NIRS-EEG data. For three out of five infants, the classifier achieved high and statistically significant accuracy when using features from the NIRS data alone, but even higher accuracy when using combined EEG and NIRS data, particularly from both hemoglobin components. For the other two infants, accuracies were lower overall, but for one of them the highest accuracy was still achieved when using combined EEG and NIRS data with both hemoglobin components. We discuss how classification based on joint NIRS-EEG data could be modified to fit the needs of different experimental paradigms and needs.
功能近红外光谱 (fNIRS) 和脑电图 (EEG) 是发展神经科学中常用的神经影像学方法。由于它们具有互补的优势,并且同时记录相对容易,因此将它们结合起来非常理想。然而,迄今为止,很少有婴儿研究使用 NIRS-EEG 进行,部分原因是分析和解释多模态数据具有挑战性。在这项工作中,我们提出了一个框架来进行多元模式分析,该框架使用 NIRS-EEG 特征矩阵,通过选择在更大的 NIRS 块内呈现的 EEG 试验并结合相应的特征来获得该矩阵。重要的是,该分类器旨在足够敏感,可应用于个体水平而不是群体水平的数据。我们在五个听人类言语和猴子叫声的新生儿的 NIRS-EEG 数据上测试了该分类器。我们评估了该模型在单独应用 EEG 数据、单独应用 NIRS 数据或同时应用 NIRS-EEG 数据时对刺激的分类精度。对于五个婴儿中的三个,当单独使用 NIRS 数据的特征时,分类器的准确率很高且具有统计学意义,但当使用组合的 EEG 和 NIRS 数据时,准确率更高,尤其是当同时使用两种血红蛋白成分时。对于另外两个婴儿,整体准确率较低,但对于其中一个婴儿,当使用两种血红蛋白成分的组合 EEG 和 NIRS 数据时,仍能达到最高的准确率。我们讨论了如何根据联合 NIRS-EEG 数据修改分类,以适应不同实验范式和需求。