Suppr超能文献

比较不同预处理程序对婴儿近红外光谱数据的影响。

Comparing different pre-processing routines for infant fNIRS data.

机构信息

Department of Developmental Psychology and Socialisation, University of Padova, Padova, Italy; Integrative Neuroscience and Cognition Center, CNRS & University of Paris, Paris, France.

Department of Developmental Psychology and Socialisation, University of Padova, Padova, Italy; Integrative Neuroscience and Cognition Center, CNRS & University of Paris, Paris, France.

出版信息

Dev Cogn Neurosci. 2021 Apr;48:100943. doi: 10.1016/j.dcn.2021.100943. Epub 2021 Mar 11.

Abstract

Functional Near Infrared Spectroscopy (fNIRS) is an important neuroimaging technique in cognitive developmental neuroscience. Nevertheless, there is no general consensus yet about best pre-processing practices. This issue is highly relevant, especially since the development and variability of the infant hemodynamic response (HRF) is not fully known. Systematic comparisons between analysis methods are thus necessary. We investigated the performance of five different pipelines, selected on the basis of a systematic search of the infant NIRS literature, in two experiments. In Experiment 1, we used synthetic data to compare the recovered HRFs with the true HRF and to assess the robustness of each method against increasing levels of noise. In Experiment 2, we analyzed experimental data from a published study, which assessed the neural correlates of artificial grammar processing in newborns. We found that with motion artifact correction (as opposed to rejection) a larger number of trials were retained, but HRF amplitude was often strongly reduced. By contrast, artifact rejection resulted in a high exclusion rate but preserved adequately the characteristics of the HRF. We also found that the performance of all pipelines declined as the noise increased, but significantly less so than if no pre-processing was applied. Finally, we found no difference between running the pre-processing on optical density or concentration change data. These results suggest that pre-processing should thus be optimized as a function of the specific quality issues a give dataset exhibits.

摘要

功能近红外光谱(fNIRS)是认知发展神经科学中的一种重要神经影像学技术。然而,对于最佳预处理实践,目前尚未达成普遍共识。这个问题非常重要,尤其是因为婴儿血液动力学反应(HRF)的发展和可变性尚不完全清楚。因此,有必要对分析方法进行系统比较。我们在两项实验中,研究了基于对婴儿近红外光谱文献的系统搜索而选择的五种不同管道的性能。在实验 1 中,我们使用合成数据比较了真实 HRF 与每种方法恢复的 HRF,并评估了每种方法对噪声水平增加的稳健性。在实验 2 中,我们分析了一项发表研究的实验数据,该研究评估了新生儿人工语法处理的神经相关性。我们发现,与拒绝运动伪影(而不是纠正)相比,保留了更多的试验,但 HRF 幅度通常大大降低。相比之下,伪影拒绝导致高排除率,但 HRF 的特征得到了很好的保留。我们还发现,随着噪声的增加,所有管道的性能都下降了,但明显低于未进行预处理的情况。最后,我们发现运行预处理时,使用光密度或浓度变化数据没有区别。这些结果表明,预处理应根据给定数据集表现出的特定质量问题进行优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/479c/7985709/d4958e1156a5/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验