Suppr超能文献

电子空穴对 DNA 序列特异性突变率的影响。

Influence of Electron-Holes on DNA Sequence-Specific Mutation Rates.

机构信息

Department of Physics, University of Houston, Houston.

Texas Center for Superconductivity, University of Houston, Houston.

出版信息

Genome Biol Evol. 2018 Apr 1;10(4):1039-1047. doi: 10.1093/gbe/evy060.

Abstract

Biases in mutation rate can influence molecular evolution, yielding rates of evolution that vary widely in different parts of the genome and even among neighboring nucleotides. Here, we explore one possible mechanism of influence on sequence-specific mutation rates, the electron-hole, which can localize and potentially trigger a replication mismatch. A hole is a mobile site of positive charge created during one-electron oxidation by, for example, radiation, contact with a mutagenic agent, or oxidative stress. Its quantum wavelike properties cause it to localize at various sites with probabilities that vary widely, by orders of magnitude, and depend strongly on the local sequence. We find significant correlations between hole probabilities and mutation rates within base triplets, observed in published mutation accumulation experiments on four species of bacteria. We have also computed hole probability spectra for hypervariable segment I of the human mtDNA control region, which contains several mutational hotspots, and for heptanucleotides in noncoding regions of the human genome, whose polymorphism levels have recently been reported. We observe significant correlations between hole probabilities, and context-specific mutation and substitution rates. The correlation with hole probability cannot be explained entirely by CpG methylation in the heptanucleotide data. Peaks in hole probability tend to coincide with mutational hotspots, even in mtDNA where CpG methylation is rare. Our results suggest that hole-enhanced mutational mechanisms, such as oxidation-stabilized tautomerization and base deamination, contribute to molecular evolution.

摘要

突变率的偏差会影响分子进化,导致基因组不同区域甚至相邻核苷酸的进化率差异很大。在这里,我们探索了一种可能影响序列特异性突变率的影响机制,即电子-空穴,它可以定位并潜在地引发复制不匹配。空穴是在单电子氧化过程中产生的正电荷的可移动位点,例如辐射、与诱变剂接触或氧化应激。它的量子波状特性导致它以各种概率在不同位置定位,概率差异很大,数量级相差很大,并且强烈依赖于局部序列。我们发现了在四个细菌物种的突变积累实验中观察到的三碱基对内的空穴概率和突变率之间存在显著相关性。我们还计算了人类 mtDNA 控制区高变区 I 的空穴概率谱,其中包含几个突变热点,以及人类基因组非编码区的七核苷酸,其多态性水平最近已经报道。我们观察到空穴概率与上下文特异性突变和替代率之间存在显著相关性。在七核苷酸数据中,空穴概率与 CpG 甲基化不能完全解释相关性。空穴概率的峰值往往与突变热点重合,即使在 mtDNA 中 CpG 甲基化很少。我们的结果表明,空穴增强的突变机制,如氧化稳定的互变异构和碱基脱氨,有助于分子进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0eb/5887664/0bac439fae79/evy060f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验