Suppr超能文献

脑电图中生理伪迹的自动去除:体育科学应用中的优化指纹方法

Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications.

作者信息

Stone David B, Tamburro Gabriella, Fiedler Patrique, Haueisen Jens, Comani Silvia

机构信息

Department of Neuroscience, Imaging and Clinical Sciences, Behavioral Imaging and Neural Dynamics Center, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.

Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany.

出版信息

Front Hum Neurosci. 2018 Mar 21;12:96. doi: 10.3389/fnhum.2018.00096. eCollection 2018.

Abstract

Data contamination due to physiological artifacts such as those generated by eyeblinks, eye movements, and muscle activity continues to be a central concern in the acquisition and analysis of electroencephalographic (EEG) data. This issue is further compounded in EEG sports science applications where the presence of artifacts is notoriously difficult to control because behaviors that generate these interferences are often the behaviors under investigation. Therefore, there is a need to develop effective and efficient methods to identify physiological artifacts in EEG recordings during sports applications so that they can be isolated from cerebral activity related to the activities of interest. We have developed an EEG artifact detection model, the Fingerprint Method, which identifies different spatial, temporal, spectral, and statistical features indicative of physiological artifacts and uses these features to automatically classify artifactual independent components in EEG based on a machine leaning approach. Here, we optimized our method using artifact-rich training data and a procedure to determine which features were best suited to identify eyeblinks, eye movements, and muscle artifacts. We then applied our model to an experimental dataset collected during endurance cycling. Results reveal that unique sets of features are suitable for the detection of distinct types of artifacts and that the Optimized Fingerprint Method was able to correctly identify over 90% of the artifactual components with physiological origin present in the experimental data. These results represent a significant advancement in the search for effective means to address artifact contamination in EEG sports science applications.

摘要

由眨眼、眼球运动和肌肉活动等生理伪迹导致的数据污染,仍然是脑电图(EEG)数据采集和分析中的核心问题。在EEG运动科学应用中,这个问题更加复杂,因为在这些应用中,伪迹的存在 notoriously 难以控制,因为产生这些干扰的行为往往正是研究的对象。因此,需要开发有效且高效的方法,以识别运动应用中EEG记录中的生理伪迹,以便将它们与与感兴趣活动相关的大脑活动区分开来。我们开发了一种EEG伪迹检测模型,即指纹法,该模型识别出指示生理伪迹的不同空间、时间、频谱和统计特征,并基于机器学习方法使用这些特征自动对EEG中的伪迹独立成分进行分类。在此,我们使用富含伪迹的训练数据和一种程序来优化我们的方法,以确定哪些特征最适合识别眨眼、眼球运动和肌肉伪迹。然后,我们将模型应用于耐力骑行期间收集的实验数据集。结果表明,独特的特征集适用于检测不同类型的伪迹,并且优化后的指纹法能够正确识别实验数据中超过90%的具有生理起源的伪迹成分。这些结果代表了在寻找有效方法解决EEG运动科学应用中的伪迹污染方面的重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d485/5871683/aee2f4478775/fnhum-12-00096-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验