Suppr超能文献

基于支持向量机和小波-独立分量分析的脑电伪迹自动分类与去除。

Automated Classification and Removal of EEG Artifacts With SVM and Wavelet-ICA.

出版信息

IEEE J Biomed Health Inform. 2018 May;22(3):664-670. doi: 10.1109/JBHI.2017.2723420. Epub 2017 Jul 4.

Abstract

Brain electrical activity recordings by electroencephalography (EEG) are often contaminated with signal artifacts. Procedures for automated removal of EEG artifacts are frequently sought for clinical diagnostics and brain-computer interface applications. In recent years, a combination of independent component analysis (ICA) and discrete wavelet transform has been introduced as standard technique for EEG artifact removal. However, in performing the wavelet-ICA procedure, visual inspection or arbitrary thresholding may be required for identifying artifactual components in the EEG signal. We now propose a novel approach for identifying artifactual components separated by wavelet-ICA using a pretrained support vector machine (SVM). Our method presents a robust and extendable system that enables fully automated identification and removal of artifacts from EEG signals, without applying any arbitrary thresholding. Using test data contaminated by eye blink artifacts, we show that our method performed better in identifying artifactual components than did existing thresholding methods. Furthermore, wavelet-ICA in conjunction with SVM successfully removed target artifacts, while largely retaining the EEG source signals of interest. We propose a set of features including kurtosis, variance, Shannon's entropy, and range of amplitude as training and test data of SVM to identify eye blink artifacts in EEG signals. This combinatorial method is also extendable to accommodate multiple types of artifacts present in multichannel EEG. We envision future research to explore other descriptive features corresponding to other types of artifactual components.

摘要

脑电活动记录通过脑电图(EEG)经常受到信号伪影的污染。为了进行临床诊断和脑机接口应用,经常需要自动去除 EEG 伪影的程序。近年来,独立成分分析(ICA)和离散小波变换的组合已被引入作为 EEG 伪影去除的标准技术。然而,在执行小波 ICA 过程中,可能需要进行视觉检查或任意阈值处理,以识别 EEG 信号中的伪影成分。我们现在提出了一种使用预训练支持向量机(SVM)识别小波 ICA 分离的伪影成分的新方法。我们的方法提供了一个强大且可扩展的系统,能够实现 EEG 信号的完全自动化识别和去除伪影,而无需应用任何任意阈值。使用受眨眼伪影污染的测试数据,我们表明我们的方法在识别伪影成分方面优于现有的阈值方法。此外,小波 ICA 与 SVM 结合成功去除了目标伪影,同时很大程度上保留了感兴趣的 EEG 源信号。我们提出了一组特征,包括峰度、方差、Shannon 熵和振幅范围,作为 SVM 的训练和测试数据,以识别 EEG 信号中的眨眼伪影。这种组合方法也可扩展以适应多通道 EEG 中存在的多种类型的伪影。我们设想未来的研究将探索对应于其他类型的伪影成分的其他描述性特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验