Durant Fallon, Morokuma Junji, Fields Christopher, Williams Katherine, Adams Dany Spencer, Levin Michael
Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts.
Independent Researcher, Sonoma, California.
Biophys J. 2017 May 23;112(10):2231-2243. doi: 10.1016/j.bpj.2017.04.011.
We show that regenerating planarians' normal anterior-posterior pattern can be permanently rewritten by a brief perturbation of endogenous bioelectrical networks. Temporary modulation of regenerative bioelectric dynamics in amputated trunk fragments of planaria stochastically results in a constant ratio of regenerates with two heads to regenerates with normal morphology. Remarkably, this is shown to be due not to partial penetrance of treatment, but a profound yet hidden alteration to the animals' patterning circuitry. Subsequent amputations of the morphologically normal regenerates in water result in the same ratio of double-headed to normal morphology, revealing a cryptic phenotype that is not apparent unless the animals are cut. These animals do not differ from wild-type worms in histology, expression of key polarity genes, or neoblast distribution. Instead, the altered regenerative bodyplan is stored in seemingly normal planaria via global patterns of cellular resting potential. This gradient is functionally instructive, and represents a multistable, epigenetic anatomical switch: experimental reversals of bioelectric state reset subsequent regenerative morphology back to wild-type. Hence, bioelectric properties can stably override genome-default target morphology, and provide a tractable control point for investigating cryptic phenotypes and the stochasticity of large-scale epigenetic controls.
我们发现,通过对内源性生物电网络进行短暂扰动,可永久性地改写再生涡虫的正常前后模式。对涡虫躯干截肢片段的再生生物电动力学进行临时调制,会随机导致双头再生体与正常形态再生体形成恒定比例。值得注意的是,这并非由于处理的部分穿透性,而是动物模式形成电路发生了深刻但隐藏的改变。随后在水中对形态正常的再生体进行截肢,会得到相同比例的双头再生体与正常形态再生体,这揭示了一种隐秘的表型,除非对动物进行切割,否则这种表型并不明显。这些动物在组织学、关键极性基因的表达或新生细胞分布方面与野生型蠕虫并无差异。相反,改变后的再生身体蓝图通过细胞静息电位的全局模式存储在看似正常的涡虫中。这种梯度具有功能指导作用,代表了一种多稳态的表观遗传解剖开关:生物电状态的实验性逆转会将后续的再生形态重置回野生型。因此,生物电特性能够稳定地超越基因组默认的目标形态,并为研究隐秘表型和大规模表观遗传控制的随机性提供一个易于处理的控制点。