Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
Biophys J. 2018 May 22;114(10):2279-2289. doi: 10.1016/j.bpj.2018.03.015. Epub 2018 Apr 6.
The compact structure of the nucleosome limits DNA accessibility and inhibits the binding of most sequence-specific proteins. Nucleosomes are not randomly located on the DNA but positioned with respect to the DNA sequence, suggesting models in which critical binding sites are either exposed in the linker, resulting in activation, or buried inside a nucleosome, resulting in repression. The mechanisms determining nucleosome positioning are therefore of paramount importance for understanding gene regulation and other events that occur in chromatin, such as transcription, replication, and repair. Here, we review our current understanding of the major determinants of nucleosome positioning: DNA sequence, nonhistone DNA-binding proteins, chromatin-remodeling enzymes, and transcription. We outline the major challenges for the future: elucidating the precise mechanisms of chromatin opening and promoter activation, identifying the complexes that occupy promoters, and understanding the multiscale problem of chromatin fiber organization.
核小体的紧凑结构限制了 DNA 的可及性,并抑制了大多数序列特异性蛋白质的结合。核小体并非随机定位于 DNA 上,而是相对于 DNA 序列定位,这表明在某些模型中,关键结合位点要么暴露在连接子中,从而导致激活,要么埋藏在核小体中,从而导致抑制。因此,确定核小体定位的机制对于理解基因调控和其他发生在染色质中的事件(如转录、复制和修复)至关重要。在这里,我们回顾了我们目前对核小体定位的主要决定因素的理解:DNA 序列、非组蛋白 DNA 结合蛋白、染色质重塑酶和转录。我们概述了未来的主要挑战:阐明染色质开放和启动子激活的精确机制,确定占据启动子的复合物,并理解染色质纤维组织的多尺度问题。