Suppr超能文献

一种用于控制和分析细胞间相互作用中基因表达模式的光遗传学方法。

An Optogenetic Method to Control and Analyze Gene Expression Patterns in Cell-to-cell Interactions.

作者信息

Isomura Akihiro, Kageyama Ryoichiro

机构信息

Institute for Frontier Life and Medical Sciences, Kyoto University; Japan Science and Technology Agency, PRESTO;

Institute for Frontier Life and Medical Sciences, Kyoto University; Institute for Integrated Cell-Material Sciences, Kyoto University; Graduate School of Medicine, Kyoto University; Graduate School of Biostudies, Kyoto University;

出版信息

J Vis Exp. 2018 Mar 22(133):57149. doi: 10.3791/57149.

Abstract

Cells should respond properly to temporally changing environments, which are influenced by various factors from surrounding cells. The Notch signaling pathway is one of such essential molecular machinery for cell-to-cell communications, which plays key roles in normal development of embryos. This pathway involves a cell-to-cell transfer of oscillatory information with ultradian rhythms, but despite the progress in molecular biology techniques, it has been challenging to elucidate the impact of multicellular interactions on oscillatory gene dynamics. Here, we present a protocol that permits optogenetic control and live monitoring of gene expression patterns in a precise temporal manner. This method successfully revealed that intracellular and intercellular periodic inputs of Notch signaling entrain intrinsic oscillations by frequency tuning and phase shifting at the single-cell resolution. This approach is applicable to the analysis of the dynamic features of various signaling pathways, providing a unique platform to test a functional significance of dynamic gene expression programs in multicellular systems.

摘要

细胞应能对随时间变化的环境做出适当反应,这种环境受周围细胞各种因素的影响。Notch信号通路是细胞间通讯的重要分子机制之一,在胚胎正常发育中起关键作用。该通路涉及具有超日节律的振荡信息的细胞间传递,但尽管分子生物学技术取得了进展,阐明多细胞相互作用对振荡基因动态的影响仍然具有挑战性。在此,我们提出了一种方案,该方案允许以精确的时间方式对基因表达模式进行光遗传学控制和实时监测。该方法成功揭示,Notch信号的细胞内和细胞间周期性输入通过在单细胞分辨率下的频率调谐和相移来带动固有振荡。这种方法适用于分析各种信号通路的动态特征,为测试多细胞系统中动态基因表达程序的功能意义提供了一个独特的平台。

相似文献

2
Optogenetic perturbation and bioluminescence imaging to analyze cell-to-cell transfer of oscillatory information.
Genes Dev. 2017 Mar 1;31(5):524-535. doi: 10.1101/gad.294546.116. Epub 2017 Apr 3.
3
Illuminating information transfer in signaling dynamics by optogenetics.
Curr Opin Cell Biol. 2017 Dec;49:9-15. doi: 10.1016/j.ceb.2017.11.002. Epub 2017 Nov 22.
4
Cell-in-the-loop pattern formation with optogenetically emulated cell-to-cell signaling.
Nat Commun. 2020 Mar 13;11(1):1355. doi: 10.1038/s41467-020-15166-3.
5
6
Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression.
Cell Syst. 2022 May 18;13(5):353-364.e6. doi: 10.1016/j.cels.2022.02.004. Epub 2022 Mar 16.
7
Ultradian oscillations and pulses: coordinating cellular responses and cell fate decisions.
Development. 2014 Oct;141(19):3627-36. doi: 10.1242/dev.104497.
9
Application of Optogenetics to Probe the Signaling Dynamics of Cell Fate Decision-Making.
Methods Mol Biol. 2023;2634:315-326. doi: 10.1007/978-1-0716-3008-2_14.
10
Light Control of Gene Expression Dynamics.
Adv Exp Med Biol. 2021;1293:235-246. doi: 10.1007/978-981-15-8763-4_14.

本文引用的文献

1
Optogenetic perturbation and bioluminescence imaging to analyze cell-to-cell transfer of oscillatory information.
Genes Dev. 2017 Mar 1;31(5):524-535. doi: 10.1101/gad.294546.116. Epub 2017 Apr 3.
2
Self-Organization of Embryonic Genetic Oscillators into Spatiotemporal Wave Patterns.
Cell. 2016 Feb 11;164(4):656-67. doi: 10.1016/j.cell.2016.01.028.
4
Noise facilitates transcriptional control under dynamic inputs.
Cell. 2015 Jan 29;160(3):381-92. doi: 10.1016/j.cell.2015.01.013.
5
Signalling dynamics in vertebrate segmentation.
Nat Rev Mol Cell Biol. 2014 Nov;15(11):709-21. doi: 10.1038/nrm3891.
6
Oscillatory control of factors determining multipotency and fate in mouse neural progenitors.
Science. 2013 Dec 6;342(6163):1203-8. doi: 10.1126/science.1242366. Epub 2013 Oct 31.
7
Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics.
Dev Cell. 2012 Nov 13;23(5):995-1005. doi: 10.1016/j.devcel.2012.09.009.
9
Spatiotemporal control of gene expression by a light-switchable transgene system.
Nat Methods. 2012 Feb 12;9(3):266-9. doi: 10.1038/nmeth.1892.
10
Bright and stable near-infrared fluorescent protein for in vivo imaging.
Nat Biotechnol. 2011 Jul 17;29(8):757-61. doi: 10.1038/nbt.1918.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验