Department of Chemistry, University of California, Davis, CA 95616.
Department of Molecular and Cellular Biology, University of California, Davis, CA 95616.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4387-4392. doi: 10.1073/pnas.1720682115. Epub 2018 Apr 9.
Phytochrome photoreceptors control plant growth, development, and the shade avoidance response that limits crop yield in high-density agricultural plantings. Cyanobacteriochromes (CBCRs) are distantly related photosensory proteins that control cyanobacterial metabolism and behavior in response to light. Photoreceptors in both families reversibly photoconvert between two photostates via photoisomerization of linear tetrapyrrole (bilin) chromophores. Spectroscopic and biochemical studies have demonstrated heterogeneity in both photostates, but the structural basis for such heterogeneity remains unclear. We report solution NMR structures for both photostates of the red/green CBCR NpR6012g4 from In addition to identifying structural changes accompanying photoconversion, these structures reveal structural heterogeneity for residues Trp655 and Asp657 in the red-absorbing NpR6012g4 dark state, yielding two distinct environments for the phycocyanobilin chromophore. We use site-directed mutagenesis and fluorescence and absorbance spectroscopy to assign an orange-absorbing population in the NpR6012g4 dark state to the minority configuration for Asp657. This population does not undergo full, productive photoconversion, as shown by time-resolved spectroscopy and absorption spectroscopy at cryogenic temperature. Our studies thus elucidate the spectral and photochemical consequences of structural heterogeneity in a member of the phytochrome superfamily, insights that should inform efforts to improve photochemical or fluorescence quantum yields in the phytochrome superfamily.
光敏色素受体控制着植物的生长、发育以及在高密度农业种植中限制作物产量的避荫反应。藻胆体(CBCRs)是与光敏色素关系较远的感光蛋白,可控制蓝藻对光的代谢和行为。这两个家族的光受体都可以通过线性四吡咯(bilin)发色团的光异构化在两种光态之间可逆地光转化。光谱和生化研究表明两种光态都存在异质性,但这种异质性的结构基础仍不清楚。我们报道了来自 的红/绿 CBCR NpR6012g4 的两种光态的溶液 NMR 结构。除了确定光转化伴随的结构变化外,这些结构还揭示了在红光吸收的 NpR6012g4 暗态中色氨酸残基 655 和天冬氨酸残基 657 的结构异质性,为藻胆素发色团提供了两种不同的环境。我们使用定点突变和荧光和吸收光谱将 NpR6012g4 暗态中的橙色吸收群体分配给天冬氨酸残基 657 的少数构型。该群体不能进行完全的、有生产力的光转化,如时间分辨光谱和低温下的吸收光谱所示。因此,我们的研究阐明了在植物色素超家族成员中结构异质性的光谱和光化学后果,这些见解应该为提高植物色素超家族的光化学或荧光量子产率的努力提供信息。