Suppr超能文献

一种用于微生物组数据联合分析的贝叶斯半参数回归模型。

A Bayesian Semiparametric Regression Model for Joint Analysis of Microbiome Data.

作者信息

Lee Juhee, Sison-Mangus Marilou

机构信息

Department of Applied Mathematics and Statistics, University of California, Santa Cruz, Santa Cruz, CA, United States.

Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States.

出版信息

Front Microbiol. 2018 Mar 26;9:522. doi: 10.3389/fmicb.2018.00522. eCollection 2018.

Abstract

The successional dynamics of microbial communities are influenced by the synergistic interactions of physical and biological factors. In our motivating data, ocean microbiome samples were collected from the Santa Cruz Municipal Wharf, Monterey Bay at multiple time points and then 16S ribosomal RNA (rRNA) sequenced. We develop a Bayesian semiparametric regression model to investigate how microbial abundance and succession change with covarying physical and biological factors including algal bloom and domoic acid concentration level using 16S rRNA sequencing data. A generalized linear regression model is built using the Laplace prior, a sparse inducing prior, to improve estimation of covariate effects on mean abundances of microbial species represented by operational taxonomic units (OTUs). A nonparametric prior model is used to facilitate borrowing strength across OTUs, across samples and across time points. It flexibly estimates baseline mean abundances of OTUs and provides the basis for improved quantification of covariate effects. The proposed method does not require prior normalization of OTU counts to adjust differences in sample total counts. Instead, the normalization and estimation of covariate effects on OTU abundance are simultaneously carried out for joint analysis of all OTUs. Using simulation studies and a real data analysis, we demonstrate improved inference compared to an existing method.

摘要

微生物群落的演替动态受到物理和生物因素的协同相互作用的影响。在我们的激励数据中,从蒙特雷湾圣克鲁斯市码头在多个时间点采集了海洋微生物组样本,然后对16S核糖体RNA(rRNA)进行测序。我们开发了一种贝叶斯半参数回归模型,以使用16S rRNA测序数据研究微生物丰度和演替如何随包括藻华和软骨藻酸浓度水平在内的协变物理和生物因素而变化。使用拉普拉斯先验(一种稀疏诱导先验)构建广义线性回归模型,以改进对由操作分类单元(OTU)表示的微生物物种平均丰度的协变量效应的估计。使用非参数先验模型来促进跨OTU、跨样本和跨时间点的强度借用。它灵活地估计OTU的基线平均丰度,并为改进协变量效应的量化提供基础。所提出的方法不需要对OTU计数进行事先归一化来调整样本总数的差异。相反,对OTU丰度的协变量效应的归一化和估计是同时进行的,以便对所有OTU进行联合分析。通过模拟研究和实际数据分析,我们证明了与现有方法相比,推理得到了改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验