Novak Richard, Ng Carlos F, Ingber Donald E
Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA.
Methods Mol Biol. 2018;1771:161-170. doi: 10.1007/978-1-4939-7792-5_13.
Microfluidic systems can be applied to develop unique tools for cell culture, low-cost diagnostics, and precision experimentation by leveraging microscale fluid flow. As the field has expanded and matured, there is a need for rapid prototyping that is both accessible to most research groups and can readily translate toward scalable commercial manufacturing. Here, we describe a protocol that incorporates rapid computer numerical control (CNC) milling of positive molds, casting of a negative high-durometer silicone mold, and hot embossing to produce microfluidic devices composed of virtually any thermoplastic material. The method bypasses the need for high-precision machining of the bonding surfaces by using a cast acrylic stock and only milling channels, thus expanding this protocol to any CNC platform This technique represents a versatile, high-fidelity prototyping method that enables fast turnaround of prototype devices in a standard laboratory setting, while offering scalability for commercial manufacturing.
微流控系统可通过利用微尺度流体流动,应用于开发用于细胞培养、低成本诊断和精密实验的独特工具。随着该领域的不断扩展和成熟,需要一种大多数研究团队都能使用的快速原型制作方法,并且能够轻松转化为可扩展的商业制造。在此,我们描述了一种协议,该协议包括对阳模进行快速计算机数控(CNC)铣削、浇铸高硬度负硅橡胶模具以及热压印,以生产由几乎任何热塑性材料组成的微流控装置。该方法通过使用浇铸丙烯酸坯料并仅铣削通道来绕过对键合表面进行高精度加工的需求,从而将该协议扩展到任何CNC平台。这种技术代表了一种通用的、高保真的原型制作方法,能够在标准实验室环境中快速制作原型设备,同时为商业制造提供可扩展性。