Suppr超能文献

从多模态脑 MRI 计算可靠的纹理指标:基于弥漫性内在脑桥胶质瘤患者研究的建议。

Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma.

机构信息

IMIV, Inserm, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France.

出版信息

Phys Med Biol. 2018 May 10;63(10):105003. doi: 10.1088/1361-6560/aabd21.

Abstract

Few methodological studies regarding widely used textural indices robustness in MRI have been reported. In this context, this study aims to propose some rules to compute reliable textural indices from multimodal 3D brain MRI. Diagnosis and post-biopsy MR scans including T1, post-contrast T1, T2 and FLAIR images from thirty children with diffuse intrinsic pontine glioma (DIPG) were considered. The hybrid white stripe method was adapted to standardize MR intensities. Sixty textural indices were then computed for each modality in different regions of interest (ROI), including tumor and white matter (WM). Three types of intensity binning were compared [Formula: see text]: constant bin width and relative bounds; [Formula: see text] constant number of bins and relative bounds; [Formula: see text] constant number of bins and absolute bounds. The impact of the volume of the region was also tested within the WM. First, the mean Hellinger distance between patient-based intensity distributions decreased by a factor greater than 10 in WM and greater than 2.5 in gray matter after standardization. Regarding the binning strategy, the ranking of patients was highly correlated for 188/240 features when comparing [Formula: see text] with [Formula: see text], but for only 20 when comparing [Formula: see text] with [Formula: see text], and nine when comparing [Formula: see text] with [Formula: see text]. Furthermore, when using [Formula: see text] or [Formula: see text] texture indices reflected tumor heterogeneity as assessed visually by experts. Last, 41 features presented statistically significant differences between contralateral WM regions when ROI size slightly varies across patients, and none when using ROI of the same size. For regions with similar size, 224 features were significantly different between WM and tumor. Valuable information from texture indices can be biased by methodological choices. Recommendations are to standardize intensities in MR brain volumes, to use intensity binning with constant bin width, and to define regions with the same volumes to get reliable textural indices.

摘要

目前报道的关于磁共振成像中广泛使用的纹理指标稳健性的方法学研究较少。在这种情况下,本研究旨在提出一些规则,以便从多模态 3D 脑 MRI 中计算可靠的纹理指标。共纳入 30 例弥漫性内在脑桥胶质瘤(DIPG)患儿的诊断及活检后 MRI 扫描,包括 T1、增强 T1、T2 和 FLAIR 图像。采用混合白条纹法对 MRI 强度进行标准化。然后在不同感兴趣区(ROI)计算每种模态的 60 种纹理指标,包括肿瘤和白质(WM)。比较了三种强度分箱策略[公式:见文本]:固定箱宽和相对边界;[公式:见文本]固定箱数和相对边界;[公式:见文本]固定箱数和绝对边界。还在 WM 内测试了 ROI 体积的影响。首先,在标准化后,WM 中患者基于强度分布的平均 Hellinger 距离减小了 10 倍以上,灰质中减小了 2.5 倍以上。关于分箱策略,当比较[公式:见文本]与[公式:见文本]时,188/240 个特征的患者排名高度相关,但当比较[公式:见文本]与[公式:见文本]时,只有 20 个相关,当比较[公式:见文本]与[公式:见文本]时,只有 9 个相关。此外,当使用[公式:见文本]或[公式:见文本]纹理指数时,反映了肿瘤异质性,这与专家视觉评估一致。最后,当 ROI 大小在患者间略有变化时,对侧 WM 区域之间的 41 个特征存在统计学差异,而当使用相同大小的 ROI 时,没有差异。对于具有相似大小的区域,WM 和肿瘤之间有 224 个特征存在显著差异。纹理指标中的有价值信息可能会受到方法学选择的影响。建议对脑磁共振体积的强度进行标准化,使用固定箱宽的强度分箱,并定义具有相同体积的区域,以获得可靠的纹理指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验