Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
PRESTO, JST, Saitama 332-0012, Japan; Institute of Industrial Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-0041, Japan.
J Theor Biol. 2018 Jul 7;448:80-85. doi: 10.1016/j.jtbi.2018.04.006. Epub 2018 Apr 7.
Direct-acting antivirals (DAAs) treat hepatitis C virus (HCV) by targeting its intracellular viral replication. DAAs are effective and deliver high clinical performance against HCV infection, but optimization of the DAA treatment regimen is ongoing. Different classes of DAAs are currently under development, and HCV treatments that combine two or three DAAs with different action mechanisms are being improved. To accurately quantify the antiviral effect of these DAA treatments and optimize multi-drug combinations, we must describe the intracellular viral replication processes corresponding to the action mechanisms by multiscale mathematical models. Previous multiscale models of HCV treatment have been formulated by partial differential equations (PDEs). However, estimating the parameters from clinical datasets requires comprehensive numerical PDE computations that are time consuming and often converge poorly. Here, we propose a user-friendly approach that transforms a standard PDE multiscale model of HCV infection (Guedj J et al., Proc. Natl. Acad. Sci. USA 2013; 110(10):3991-6) to mathematically identical ordinary differential equations (ODEs) without any assumptions. We also confirm consistency between the numerical solutions of our transformed ODE model and the original PDE model. This relationship between a detailed structured model and a simple model is called ``model aggregation problem'' and a fundamental important in theoretical biology. In particular, as the parameters of ODEs can be estimated by already established methods, our transformed ODE model and its modified version avoid the time-consuming computations and are broadly available for further data analysis.
直接作用抗病毒药物 (DAAs) 通过靶向其细胞内病毒复制来治疗丙型肝炎病毒 (HCV)。DAA 治疗 HCV 感染有效,具有很高的临床疗效,但仍在不断优化 DAA 治疗方案。目前正在开发不同类别的 DAA,并且正在改进将两种或三种具有不同作用机制的 DAA 结合在一起的 HCV 治疗方法。为了准确量化这些 DAA 治疗的抗病毒效果并优化多药物组合,我们必须通过多尺度数学模型来描述与作用机制相对应的细胞内病毒复制过程。先前的 HCV 治疗多尺度模型是通过偏微分方程 (PDE) 来制定的。然而,从临床数据集估计参数需要全面的数值 PDE 计算,这既耗时又常常难以收敛。在这里,我们提出了一种用户友好的方法,该方法将 HCV 感染的标准 PDE 多尺度模型(Guedj J 等人,Proc. Natl. Acad. Sci. USA 2013;110(10):3991-6)转换为无需任何假设的数学上相同的常微分方程 (ODE)。我们还确认了我们转换的 ODE 模型的数值解与原始 PDE 模型之间的一致性。这种详细结构模型和简单模型之间的关系称为“模型聚合问题”,在理论生物学中具有重要的基础地位。特别是,由于 ODE 的参数可以通过已建立的方法来估计,因此我们的转换 ODE 模型及其修改版本避免了耗时的计算,并且广泛可用于进一步的数据分析。