Suppr超能文献

一种丙型肝炎病毒动力学多尺度模型的参数估计方法。

A Parameter Estimation Method for Multiscale Models of Hepatitis C Virus Dynamics.

机构信息

Department of Computer Science, Ben-Gurion University, Beersheba, Israel.

Department of Software Engineering, Sami Shamoon College of Engineering, Beersheba, Israel.

出版信息

Bull Math Biol. 2019 Oct;81(10):3675-3721. doi: 10.1007/s11538-019-00644-7. Epub 2019 Jul 23.

Abstract

Mathematical models that are based on differential equations require detailed knowledge about the parameters that are included in the equations. Some of the parameters can be measured experimentally while others need to be estimated. When the models become more sophisticated, such as in the case of multiscale models of hepatitis C virus dynamics that deal with partial differential equations (PDEs), several strategies can be tried. It is possible to use parameter estimation on an analytical approximation of the solution to the multiscale model equations, namely the long-term approximation, but this limits the scope of the parameter estimation method used and a long-term approximation needs to be derived for each model. It is possible to transform the PDE multiscale model to a system of ODEs, but this has an effect on the model parameters themselves and the transformation can become problematic for some models. Finally, it is possible to use numerical solutions for the multiscale model and then use canned methods for the parameter estimation, but the latter is making the user dependent on a black box without having full control over the method. The strategy developed here is to start by working directly on the multiscale model equations for preparing them toward the parameter estimation method that is fully coded and controlled by the user. It can also be adapted to multiscale models of other viruses. The new method is described, and illustrations are provided using a user-friendly simulator that incorporates the method.

摘要

基于微分方程的数学模型需要对包含在方程中的参数有详细的了解。有些参数可以通过实验测量,而有些则需要估计。当模型变得更加复杂时,例如在涉及偏微分方程 (PDE) 的丙型肝炎病毒动力学多尺度模型的情况下,可以尝试几种策略。可以对多尺度模型方程的解析近似解(即长期近似解)进行参数估计,但这限制了所使用的参数估计方法的范围,并且需要为每个模型推导出长期近似解。可以将 PDE 多尺度模型转换为 ODE 系统,但这会对模型参数本身产生影响,并且对于某些模型,转换可能会成为问题。最后,可以使用多尺度模型的数值解,然后使用现成的参数估计方法,但后者会使使用者依赖于一个黑盒子,而无法完全控制该方法。这里开发的策略是直接从多尺度模型方程开始,为它们准备完全由用户编码和控制的参数估计方法。它也可以适用于其他病毒的多尺度模型。描述了新方法,并使用包含该方法的用户友好模拟器提供了说明。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验