Suppr超能文献

复杂网络的合并双曲嵌入的优化。

Optimisation of the coalescent hyperbolic embedding of complex networks.

机构信息

Department of Biological Physics, Eötvös Loránd University, Pázmány P. stny. 1/A, Budapest, 1117, Hungary.

MTA-ELTE Statistical and Biological Physics Research Group, Pázmány P. stny. 1/A, Budapest, 1117, Hungary.

出版信息

Sci Rep. 2021 Apr 16;11(1):8350. doi: 10.1038/s41598-021-87333-5.

Abstract

Several observations indicate the existence of a latent hyperbolic space behind real networks that makes their structure very intuitive in the sense that the probability for a connection is decreasing with the hyperbolic distance between the nodes. A remarkable network model generating random graphs along this line is the popularity-similarity optimisation (PSO) model, offering a scale-free degree distribution, high clustering and the small-world property at the same time. These results provide a strong motivation for the development of hyperbolic embedding algorithms, that tackle the problem of finding the optimal hyperbolic coordinates of the nodes based on the network structure. A very promising recent approach for hyperbolic embedding is provided by the noncentered minimum curvilinear embedding (ncMCE) method, belonging to the family of coalescent embedding algorithms. This approach offers a high-quality embedding at a low running time. In the present work we propose a further optimisation of the angular coordinates in this framework that seems to reduce the logarithmic loss and increase the greedy routing score of the embedding compared to the original version, thereby adding an extra improvement to the quality of the inferred hyperbolic coordinates.

摘要

有几点观察表明,真实网络背后存在着潜在的双曲空间,这使得它们的结构非常直观,即连接的概率随着节点之间的双曲距离的增加而减小。一种沿着这条线生成随机图的出色网络模型是流行度相似性优化(PSO)模型,它提供了无标度的度分布、高聚类度和小世界特性。这些结果为双曲嵌入算法的发展提供了强大的动力,这些算法旨在根据网络结构找到节点的最佳双曲坐标。最近一种很有前途的双曲嵌入方法是无中心化最小测地线嵌入(ncMCE)方法,它属于融合嵌入算法的家族。这种方法在低运行时间内提供了高质量的嵌入。在本工作中,我们提出了在这个框架内进一步优化角度坐标,这似乎可以降低嵌入的对数损失并增加贪婪路由得分,从而为推断出的双曲坐标的质量增加了额外的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/decd/8052422/ed7999915d1a/41598_2021_87333_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验