Suppr超能文献

生物信号通路和潜在的数学网络表示:通过优化进行生物学发现。

Biological signaling pathways and potential mathematical network representations: biological discovery through optimization.

机构信息

Public Health Program, Ponce Health Sciences University, Ponce, 00732-7004, Puerto Rico.

Industrial Engineering Department, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Mayagüez, 00681-9043, Puerto Rico.

出版信息

Cancer Med. 2018 May;7(5):1875-1895. doi: 10.1002/cam4.1301. Epub 2018 Apr 10.

Abstract

Establishing the role that different genes play in the development of cancer is a daunting task. A step toward this end is the detection of genes that are important in the illness from high-throughput biological experiments. Furthermore, it is safe to say that it is highly unlikely that these show expression changes independently, even with a list of potentially important genes. A biological signaling pathway is a more plausible underlying mechanism as favored in the literature. This work attempts to build a mathematical network problem through the analysis of microarray experiments. A preselection of genes is carried out with a multiple criteria optimization framework previously published by our research group . Afterward, application of the Traveling Salesperson Problem and Minimum Spanning Tree network optimization models are proposed to identify potential signaling pathways via the most correlated path among the genes of interest. Biological evidencing is provided to assess the effectiveness of the proposed methods. The capability of our analysis strategy is also demonstrated through the undertaking of meta-analysis studies. Three important aspects are novel in this work: (1) our joint analyses of different groups of lung cancer states reveal new correlations, biologically evidenced, and previously undocumented; (2) computation of the correlation coefficients from expression differences leads to an effective use of network optimization methods; and (3) the methods yield mathematically optimal correlation structures: no other configuration is better correlated using the available information.

摘要

确定不同基因在癌症发展中所扮演的角色是一项艰巨的任务。为此,可以通过高通量生物实验来检测在疾病中重要的基因。此外,可以肯定的是,即使列出了潜在的重要基因,这些基因的表达变化也不太可能独立出现。生物信号通路是一种更合理的潜在机制,这在文献中得到了支持。本工作通过对微阵列实验的分析,尝试构建一个数学网络问题。我们的研究小组之前已经发表了一个多标准优化框架来进行基因的预筛选。之后,通过应用旅行商问题和最小生成树网络优化模型,确定最相关的基因路径,从而识别潜在的信号通路。通过提供生物学证据来评估所提出方法的有效性。通过进行荟萃分析研究,还证明了我们分析策略的能力。这项工作有三个重要的新颖点:(1)对不同肺癌状态组的联合分析揭示了新的相关性,这些相关性具有生物学证据,并且之前没有记录在案;(2)通过表达差异计算相关系数,可有效地利用网络优化方法;(3)方法产生了数学上最优的相关结构:使用可用信息,没有其他配置可以更好地相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1484/5943441/77fee4280453/CAM4-7-1875-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验