Suppr超能文献

MS-EmpiRe 利用肽级别的噪声分布进行超灵敏差异表达蛋白检测。

MS-EmpiRe Utilizes Peptide-level Noise Distributions for Ultra-sensitive Detection of Differentially Expressed Proteins.

机构信息

‡Ludwig-Maximilians-Universität München, Department of Informatics, Amalienstrasse 17, 80333 München, Germany; §Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximillians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.

‡Ludwig-Maximilians-Universität München, Department of Informatics, Amalienstrasse 17, 80333 München, Germany.

出版信息

Mol Cell Proteomics. 2019 Sep;18(9):1880-1892. doi: 10.1074/mcp.RA119.001509. Epub 2019 Jun 24.

Abstract

Mass spectrometry based proteomics is the method of choice for quantifying genome-wide differential changes of protein expression in a wide range of biological and biomedical applications. Protein expression changes need to be reliably derived from many measured peptide intensities and their corresponding peptide fold changes. These peptide fold changes vary considerably for a given protein. Numerous instrumental setups aim to reduce this variability, whereas current computational methods only implicitly account for this problem. We introduce a new method, MS-EmpiRe, which explicitly accounts for the noise underlying peptide fold changes. We derive data set-specific, intensity-dependent empirical error fold change distributions, which are used for individual weighing of peptide fold changes to detect differentially expressed proteins (DEPs).In a recently published proteome-wide benchmarking data set, MS-EmpiRe doubles the number of correctly identified DEPs at an estimated FDR cutoff compared with state-of-the-art tools. We additionally confirm the superior performance of MS-EmpiRe on simulated data. MS-EmpiRe requires only peptide intensities mapped to proteins and, thus, can be applied to any common quantitative proteomics setup. We apply our method to diverse MS data sets and observe consistent increases in sensitivity with more than 1000 additional significant proteins in deep data sets, including a clinical study over multiple patients. At the same time, we observe that even the proteins classified as most insignificant by other methods but significant by MS-EmpiRe show very clear regulation on the peptide intensity level. MS-EmpiRe provides rapid processing (< 2 min for 6 LC-MS/MS runs (3 h gradients)) and is publicly available under github.com/zimmerlab/MS-EmpiRe with a manual including examples.

摘要

基于质谱的蛋白质组学是一种广泛应用于生物和生物医学领域的方法,用于定量分析基因组范围内蛋白质表达的差异变化。蛋白质表达的变化需要从许多测量的肽强度及其相应的肽倍数变化中可靠地推导出来。对于给定的蛋白质,这些肽倍数变化差异很大。许多仪器设置旨在减少这种可变性,而当前的计算方法仅隐含地考虑到这个问题。我们引入了一种新的方法,MS-EmpiRe,它明确考虑了肽倍数变化的潜在噪声。我们推导出数据集特定的、依赖于强度的经验误差倍数变化分布,用于对肽倍数变化进行个体加权,以检测差异表达的蛋白质(DEPs)。在最近发表的一个全蛋白质组基准数据集,MS-EmpiRe 与最先进的工具相比,将正确识别的 DEPs 的数量增加了一倍,在估计的 FDR 截止值下。我们还在模拟数据上确认了 MS-EmpiRe 的卓越性能。MS-EmpiRe 仅需要将映射到蛋白质的肽强度,因此可以应用于任何常见的定量蛋白质组学设置。我们将我们的方法应用于不同的 MS 数据集,并观察到随着深度数据集(包括多个患者的一项临床研究)中超过 1000 个额外显著蛋白质的增加,灵敏度持续提高。同时,我们观察到即使是其他方法认为最不重要但 MS-EmpiRe 认为显著的蛋白质,在肽强度水平上也表现出非常明显的调节。MS-EmpiRe 提供快速处理(对于 6 个 LC-MS/MS 运行(3 小时梯度),处理时间不到 2 分钟),并在 github.com/zimmerlab/MS-EmpiRe 上公开提供,附有手册和示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07ea/6731086/5a473dc435af/zjw0091959950007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验