Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076, Tübingen, Germany.
Nat Commun. 2018 Apr 10;9(1):1351. doi: 10.1038/s41467-018-03623-z.
Quantum metrology promises high-precision measurements of classical parameters with far reaching implications for science and technology. So far, research has concentrated almost exclusively on quantum-enhancements in integrable systems, such as precessing spins or harmonic oscillators prepared in non-classical states. Here we show that large benefits can be drawn from rendering integrable quantum sensors chaotic, both in terms of achievable sensitivity as well as robustness to noise, while avoiding the challenge of preparing and protecting large-scale entanglement. We apply the method to spin-precession magnetometry and show in particular that the sensitivity of state-of-the-art magnetometers can be further enhanced by subjecting the spin-precession to non-linear kicks that renders the dynamics chaotic.
量子计量学有望实现对经典参数的高精度测量,对科学和技术具有深远的影响。到目前为止,研究几乎完全集中在可积系统中的量子增强上,例如进动自旋或在非经典态下制备的谐振子。在这里,我们表明,通过使可积量子传感器混沌化,可以获得很大的收益,无论是在可实现的灵敏度方面,还是在对噪声的鲁棒性方面,同时避免了制备和保护大规模纠缠的挑战。我们将该方法应用于自旋进动磁强计,并特别表明,通过使自旋进动受到非线性踢动,使动力学混沌化,可以进一步提高最先进的磁强计的灵敏度。