ACS Appl Mater Interfaces. 2018 May 9;10(18):15477-15486. doi: 10.1021/acsami.8b02907. Epub 2018 Apr 26.
Surface-associated microbial communities, known as biofilms, pose significant challenges in clinical and industrial settings. Micro-/nanoscale substratum surface features have been shown to disrupt firm adhesion of planktonic microbes to surfaces, thereby interfering with the earliest stage of biofilm formation. However, the role of geometry and size of surface features in microbial retention is not completely understood. In this study, we developed a biophysical model that describes the changes in the total free energy (adhesion energy and stretching energy) of an adherent Candida albicans cell on nanofiber-coated surfaces as a function of the geometry (i.e., diameter) and configuration (i.e., interfiber spacing) of the surface features (i.e., nanofibers). We then introduced a new nondimensional parameter, Π, to represent the ratio of cell rigidity to cell-substratum interfacial energy. We show that the total free energy is a strong function of topographical feature size at higher Π and lower spacing values. To confirm our biophysical model predictions, we performed 24 h dynamic retention assays and quantified cell attachment number density on surfaces coated with highly ordered polystyrene nanofibers. We show that the total free energy of a single adherent cell on a patterned surface is a key determinant of microbial retention on that surface. The cell attachment density trend closely correlates with the predictions based on the adherent single-cell total energy. The nanofiber coating design (1.2 μm diameter, 2 μm spacing) that maximized the total energy of the adherent cell resulted in the lowest microbial retention. We further demonstrate the utility of our biophysical model by showing close correlation between the computed single-cell total free energy and biofilm nucleation on fiber-coated urinary and central venous catheters of different materials. This biophysical model could offer a powerful new paradigm in ab initio design of patterned surfaces for controlled biofilm growth for medical applications and beyond.
表面相关的微生物群落,称为生物膜,在临床和工业环境中带来了重大挑战。已经证明微/纳米级基底表面特征可以破坏浮游微生物对表面的牢固附着,从而干扰生物膜形成的最早阶段。然而,表面特征的几何形状和大小在微生物保留中的作用尚不完全清楚。在这项研究中,我们开发了一种生物物理模型,该模型描述了在涂有纳米纤维的表面上附着的白色念珠菌细胞的总自由能(附着能和拉伸能)随表面特征(即纳米纤维)的几何形状(即直径)和构型(即纤维间间距)的变化。然后,我们引入了一个新的无量纲参数Π,表示细胞刚性与细胞-基底界面能的比值。我们表明,在较高的Π值和较低的间距值下,总自由能是形貌特征尺寸的强函数。为了验证我们的生物物理模型预测,我们进行了 24 小时动态保留测定,并量化了高度有序聚苯乙烯纳米纤维涂层表面上的细胞附着数量密度。我们表明,在图案化表面上单个附着细胞的总自由能是决定该表面上微生物保留的关键因素。细胞附着密度趋势与基于附着单细胞总能量的预测密切相关。最大程度地增加附着细胞总能量的纳米纤维涂层设计(1.2μm 直径,2μm 间距)导致微生物保留率最低。我们还通过显示计算出的单细胞总自由能与不同材料的纤维涂层尿液和中央静脉导管上生物膜成核之间的密切相关性,证明了我们生物物理模型的实用性。这种生物物理模型可以为用于医疗应用和其他领域的受控生物膜生长的图案化表面的从头设计提供一个强大的新范例。