Suppr超能文献

双能谱 CT 鉴别良恶性胸腔积液。

Differential diagnosis between benign and malignant pleural effusion with dual-energy spectral CT.

机构信息

Department of Radiology, the First Affiliated Hospital of Xi'An Jiaotong University College of Medicine, Xi'An city, Shaanxi Prov, China.

Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese medicine, Xianyang city, Shaanxi Prov, China.

出版信息

PLoS One. 2018 Apr 11;13(4):e0193714. doi: 10.1371/journal.pone.0193714. eCollection 2018.

Abstract

PURPOSE

To investigate the value of spectral CT in the differential diagnosis of benign from malignant pleural effusion.

METHOD AND MATERIALS

14 patients with benign pleural effusion and 15 patients with malignant pleural effusion underwent non-contrast spectral CT imaging. These patients were later verified by the combination of disease history, clinical signs and other information with the consensus of surgeons and radiologists. Various Spectral CT image parameters measured for the effusion were as follows: CT numbers of the polychromatic 140kVp images, monochromatic images at 40keV and 100keV, the material density contents from the water, fat and blood-based material decomposition images, the effective atomic number and the spectral curve slope. These values were statistically compared with t test and logistic regression analysis between benign and malignant pleural effusion.

RESULTS

The CT value of benign and malignant pleural effusion in the polychromatic 140kVp images showed no differences (12.61±3.39HU vs. 14.71±5.03HU) (P>0.05), however, they were statistically different on the monochromatic images at 40keV (43.15±3.79 vs. 39.42±2.60, p = 0.005) and 100keV (9.11±1.38 vs. 6.52±2.04, p<0.001). There was difference in the effective atomic number value between the benign (7.87±0.08) and malignant pleural effusion (7.90±0.02) (P = 0.02). Using 6.32HU as the threshold for CT value measurement at 100keV, one could obtain sensitivity of 100% and specificity of 66.7% with area-under-curve of 0.843 for differentiating benign from malignant effusion. In addition, age and disease history were potential confounding factors for differentiating malignant pleural effusion from benign, since the older age (61.13±12.51 year-old vs48.57±12.33 year-old) as well as longer disease history (70.00±49.28 day vs.28.36±21.64 day) were more easily to be found in the malignant pleural effusion group than those in the benign pleural effusion group. By combining above five factors, one could obtain sensitivity of 100% and specificity of 71.4% with area-under-curve of 0.933 for differentiating benign from malignant effusion.

CONCLUSION

The CT value measurement at both high and low energy levels and the effective atomic number obtained in a single spectral CT scan can assist the differential diagnosis of benign from malignant pleural effusion.Combining them with patient age and disease history can further improve diagnostic performance.

CLINICAL RELEVANCE/APPLICATION: Clinical findings and Spectral CT imaging can provide significant evidences about the nature of pleural effusion.

摘要

目的

探讨能谱 CT 对良、恶性胸腔积液的鉴别诊断价值。

方法和材料

14 例良性胸腔积液患者和 15 例恶性胸腔积液患者均行非增强能谱 CT 成像。这些患者后来通过病史、临床症状等信息与外科医生和放射科医生的共识进行了验证。为胸腔积液测量了以下各种能谱 CT 图像参数:多色 140kVp 图像的 CT 值、40keV 和 100keV 单色图像、水、脂肪和基于血液的物质分解图像中的物质密度含量、有效原子序数和光谱曲线斜率。使用 t 检验和逻辑回归分析对良性和恶性胸腔积液之间的这些值进行了统计学比较。

结果

多色 140kVp 图像中良性和恶性胸腔积液的 CT 值无差异(12.61±3.39HU 与 14.71±5.03HU)(P>0.05),但在 40keV(43.15±3.79 与 39.42±2.60,p=0.005)和 100keV(9.11±1.38 与 6.52±2.04,p<0.001)单色图像上存在统计学差异。良性(7.87±0.08)和恶性胸腔积液(7.90±0.02)之间的有效原子序数值存在差异(P=0.02)。使用 100keV 时 6.32HU 作为 CT 值测量的阈值,可以获得 100%的灵敏度和 66.7%的特异性,曲线下面积为 0.843,用于区分良性和恶性积液。此外,年龄和病史是区分恶性胸腔积液和良性胸腔积液的潜在混杂因素,因为恶性胸腔积液组的年龄较大(61.13±12.51 岁与 48.57±12.33 岁)和病史较长(70.00±49.28 天与 28.36±21.64 天)比良性胸腔积液组更容易出现。通过结合以上五个因素,可获得 100%的灵敏度和 71.4%的特异性,曲线下面积为 0.933,用于区分良性和恶性胸腔积液。

结论

单次能谱 CT 扫描可获得高低能量 CT 值和有效原子序数,有助于良、恶性胸腔积液的鉴别诊断。结合患者年龄和病史可进一步提高诊断性能。

临床相关性/应用:临床发现和光谱 CT 成像可为胸腔积液的性质提供重要依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f13/5894985/6a769f3ac1e6/pone.0193714.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验