Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria.
Austrian Centre of Industrial Biotechnology, Graz, Austria.
Microb Cell Fact. 2018 Apr 11;17(1):59. doi: 10.1186/s12934-018-0905-z.
Saccharomyces cerevisiae, engineered for L-lactic acid production from glucose and xylose, is a promising production host for lignocellulose-to-lactic acid processes. However, the two principal engineering strategies-pyruvate-to-lactic acid conversion with and without disruption of the competing pyruvate-to-ethanol pathway-have not yet resulted in strains that combine high lactic acid yields (Y) and productivities (Q) on both sugar substrates. Limitations seemingly arise from a dependency on the carbon source and the aeration conditions, but the underlying effects are poorly understood. We have recently presented two xylose-to-lactic acid converting strains, IBB14LA1 and IBB14LA1_5, which have the L-lactic acid dehydrogenase from Plasmodium falciparum (pfLDH) integrated at the pdc1 (pyruvate decarboxylase) locus. IBB14LA1_5 additionally has its pdc5 gene knocked out. In this study, the influence of carbon source and oxygen on Y and Q in IBB14LA1 and IBB14LA1_5 was investigated.
In anaerobic fermentation IBB14LA1 showed a higher Y on xylose (0.27 g g ) than on glucose (0.18 g g ). The ethanol yields (Y, 0.15 g g and 0.32 g g ) followed an opposite trend. In IBB14LA1_5, the effect of the carbon source on Y was less pronounced (~ 0.80 g g , and 0.67 g g ). Supply of oxygen accelerated glucose conversions significantly in IBB14LA1 (Q from 0.38 to 0.81 g L h) and IBB14LA1_5 (Q from 0.05 to 1.77 g L h) at constant Y (IBB14LA1 ~ 0.18 g g ; IBB14LA1_5 ~ 0.68 g g ). In aerobic xylose conversions, however, lactic acid production ceased completely in IBB14LA1 and decreased drastically in IBB14LA1_5 (Y aerobic ≤ 0.25 g g and anaerobic ~ 0.80 g g ) at similar Q (~ 0.04 g L h). Switching from aerobic to microaerophilic conditions (pO ~ 2%) prevented lactic acid metabolization, observed for fully aerobic conditions, and increased Q and Y up to 0.11 g L h and 0.38 g g , respectively. The pfLDH and PDC activities in IBB14LA1 were measured and shown to change drastically dependent on carbon source and oxygen.
Evidence from conversion time courses together with results of activity measurements for pfLDH and PDC show that in IBB14LA1 the distribution of fluxes at the pyruvate branching point is carbon source and oxygen dependent. Comparison of the performance of strain IBB14LA1 and IBB14LA1_5 in conversions under different aeration conditions (aerobic, anaerobic, and microaerophilic) further suggest that xylose, unlike glucose, does not repress the respiratory response in both strains. This study proposes new genetic engineering targets for rendering genetically engineering S. cerevisiae better suited for lactic acid biorefineries.
经过基因工程改造,能够利用葡萄糖和木糖生产 L-乳酸的酿酒酵母是木质纤维素到乳酸过程的有前途的生产宿主。然而,两种主要的工程策略——有和没有破坏竞争的丙酮酸到乙醇途径的丙酮酸到乳酸的转化——尚未产生在两种糖底物上均结合高乳酸产率 (Y) 和生产率 (Q) 的菌株。限制似乎来自对碳源和通气条件的依赖,但基本影响知之甚少。我们最近提出了两种木糖到乳酸转化的菌株,IBB14LA1 和 IBB14LA1_5,它们在 pdc1(丙酮酸脱羧酶)基因座整合了疟原虫(Plasmodium falciparum)的 L-乳酸脱氢酶(pfLDH)。IBB14LA1_5 还敲除了其 pdc5 基因。在这项研究中,研究了碳源和氧气对 IBB14LA1 和 IBB14LA1_5 中 Y 和 Q 的影响。
在厌氧发酵中,IBB14LA1 在木糖上的 Y(0.27 gg)高于葡萄糖(0.18 gg)。乙醇产率(Y,0.15 gg 和 0.32 gg)呈现相反的趋势。在 IBB14LA1_5 中,碳源对 Y 的影响不那么明显(0.80 gg 和 0.67 gg)。在恒 Y(IBB14LA10.18 gg;IBB14LA1_50.68 gg)的情况下,氧气的供应显著加速了 IBB14LA1(Q 从 0.38 增加到 0.81 g L h)和 IBB14LA1_5(Q 从 0.05 增加到 1.77 g L h)的葡萄糖转化。然而,在有氧木糖转化中,乳酸生产在 IBB14LA1 中完全停止,在 IBB14LA1_5 中急剧下降(Y 有氧≤0.25 gg 和厌氧0.80 gg),在相似的 Q(0.04 g L h)下。从有氧条件切换到微需氧条件(pO2%)可防止完全有氧条件下观察到的乳酸代谢,并将 Q 和 Y 分别提高到 0.11 g L h 和 0.38 gg。测量了 IBB14LA1 中的 pfLDH 和 PDC 活性,并表明它们根据碳源和氧气的变化而发生剧烈变化。
来自转化时间过程的证据以及 pfLDH 和 PDC 活性测量结果表明,在 IBB14LA1 中,丙酮酸分支点的通量分布取决于碳源和氧气。比较菌株 IBB14LA1 和 IBB14LA1_5 在不同通气条件(有氧、厌氧和微需氧)下的转化性能进一步表明,与葡萄糖不同,木糖不会抑制两种菌株的呼吸反应。本研究提出了新的遗传工程靶点,以使经过基因工程改造的酿酒酵母更适合乳酸生物精炼厂。