Suppr超能文献

利用多模态机器学习将金属有机框架合成与应用联系起来。

Connecting metal-organic framework synthesis to applications using multimodal machine learning.

作者信息

Khan Sartaaj Takrim, Moosavi Seyed Mohamad

机构信息

Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada.

出版信息

Nat Commun. 2025 Jul 1;16(1):5642. doi: 10.1038/s41467-025-60796-0.

Abstract

Every year, researchers create hundreds of thousands of new materials, each with unique structures and properties. For example, over 5000 new metal-organic frameworks (MOFs) were reported in the past year alone. While these materials are often synthesized for specific applications, they may have potential uses in entirely different domains. However, linking these new materials to their best applications remains a significant challenge. In this study, we demonstrate a multimodal approach that uses the information available as soon as a MOF is synthesized, specifically its powder X-ray diffraction pattern (PXRD) and the chemicals used in its synthesis, to predict its potential properties and uses. By self-supervised pretraining of this model on crystal structures accessible from MOF databases, our model achieves accurate predictions for various properties, across pore structure, chemistry-reliant, and quantum-chemical properties, even when small data is available. We further assess the robustness of this method in the presence of experimental measurement imperfections. Utilizing this approach, we create a synthesis-to-application map for MOFs, offering insights into optimal material classes for diverse applications. Finally, by augmenting this model with a recommendation system, we identify promising MOFs for applications that are different from the originally reported applications. We provide this tool as an open source code and a web app to accelerate the matching of new materials with their potential industrial applications.

摘要

每年,研究人员都会创造出数十万种新材料,每种材料都具有独特的结构和性能。例如,仅在过去一年就报道了5000多种新型金属有机框架材料(MOF)。虽然这些材料通常是为特定应用而合成的,但它们可能在完全不同的领域有潜在用途。然而,将这些新材料与其最佳应用联系起来仍然是一项重大挑战。在本研究中,我们展示了一种多模态方法,该方法利用MOF刚合成时可得的信息,特别是其粉末X射线衍射图谱(PXRD)及其合成中使用的化学物质,来预测其潜在性能和用途。通过在可从MOF数据库获取的晶体结构上对该模型进行自监督预训练,我们的模型即使在数据量较少的情况下,也能对各种性质进行准确预测,涵盖孔隙结构、化学相关性质和量子化学性质。我们还在存在实验测量缺陷的情况下评估了该方法的稳健性。利用这种方法,我们创建了MOF的合成到应用图谱,为不同应用的最佳材料类别提供了见解。最后,通过用推荐系统增强该模型,我们识别出了与最初报道的应用不同的、有前景的MOF应用。我们将此工具作为开源代码和网络应用程序提供,以加速新材料与其潜在工业应用的匹配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21ae/12216699/237aa386b790/41467_2025_60796_Fig1_HTML.jpg

相似文献

1
Connecting metal-organic framework synthesis to applications using multimodal machine learning.
Nat Commun. 2025 Jul 1;16(1):5642. doi: 10.1038/s41467-025-60796-0.
2
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
5
Quality improvement strategies for diabetes care: Effects on outcomes for adults living with diabetes.
Cochrane Database Syst Rev. 2023 May 31;5(5):CD014513. doi: 10.1002/14651858.CD014513.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
7
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843.
9
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.

本文引用的文献

1
Self-Driving Laboratories for Chemistry and Materials Science.
Chem Rev. 2024 Aug 28;124(16):9633-9732. doi: 10.1021/acs.chemrev.4c00055. Epub 2024 Aug 13.
2
A holistic platform for accelerating sorbent-based carbon capture.
Nature. 2024 Aug;632(8023):89-94. doi: 10.1038/s41586-024-07683-8. Epub 2024 Jul 17.
3
Deep learning-based recommendation system for metal-organic frameworks (MOFs).
Digit Discov. 2024 Jun 10;3(7):1410-1420. doi: 10.1039/d4dd00116h. eCollection 2024 Jul 10.
4
Adsorption in Pyrene-Based Metal-Organic Frameworks: The Role of Pore Structure and Topology.
ACS Appl Mater Interfaces. 2024 Jul 17;16(28):36586-36598. doi: 10.1021/acsami.4c05527. Epub 2024 Jul 8.
5
Modular, multi-robot integration of laboratories: an autonomous workflow for solid-state chemistry.
Chem Sci. 2023 Dec 26;15(7):2456-2463. doi: 10.1039/d3sc06206f. eCollection 2024 Feb 14.
6
Accelerated chemical science with AI.
Digit Discov. 2023 Dec 6;3(1):23-33. doi: 10.1039/d3dd00213f. eCollection 2024 Jan 17.
7
MOFormer: Self-Supervised Transformer Model for Metal-Organic Framework Property Prediction.
J Am Chem Soc. 2023 Feb 8;145(5):2958-2967. doi: 10.1021/jacs.2c11420. Epub 2023 Jan 27.
8
Switching Xe/Kr adsorption selectivity in modified SBMOF-1: a theoretical study.
RSC Adv. 2020 May 1;10(29):17195-17204. doi: 10.1039/d0ra02212h. eCollection 2020 Apr 29.
9
Automated prediction of lattice parameters from X-ray powder diffraction patterns.
J Appl Crystallogr. 2021 Nov 30;54(Pt 6):1799-1810. doi: 10.1107/S1600576721010840. eCollection 2021 Dec 1.
10
Metal-Organic Frameworks (MOFs) as methane adsorbents: From storage to diluted coal mining streams concentration.
Sci Total Environ. 2021 Oct 10;790:148211. doi: 10.1016/j.scitotenv.2021.148211. Epub 2021 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验