Suppr超能文献

多疑玩家之间非局部博弈中的随机性。

Randomness in nonlocal games between mistrustful players.

作者信息

Miller Carl A, Shi Yaoyun

机构信息

National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20890, USA, Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA.

Dept. of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Quantum Inf Comput. 2017 Jun;17(7):595-610.

Abstract

If two quantum players at a nonlocal game achieve a superclassical score, then their measurement outcomes must be at least partially random from the perspective of any third player. This is the basis for device-independent quantum cryptography. In this paper we address a related question: does a superclassical score at guarantee that one player has created randomness from the perspective of the other player? We show that for complete-support games, the answer is yes: even if the second player is given the first player's input at the conclusion of the game, he cannot perfectly recover her output. Thus some amount of randomness (i.e., randomness possessed by only one player) is always obtained when randomness is certified from nonlocal games with quantum strategies. This is in contrast to non-signaling game strategies, which may produce global randomness without any local randomness. We discuss potential implications for cryptographic protocols between mistrustful parties.

摘要

如果非局域博弈中的两个量子参与者获得了超经典分数,那么从任何第三方参与者的角度来看,他们的测量结果必然至少部分是随机的。这是与设备无关的量子密码学的基础。在本文中,我们探讨一个相关问题:在非局域博弈中获得超经典分数是否能保证从一方参与者的角度来看,另一方参与者产生了随机性?我们表明,对于完全支持的博弈,答案是肯定的:即使在博弈结束时将第一个参与者的输入提供给第二个参与者,他也无法完美恢复她的输出。因此,当通过量子策略从非局域博弈中验证随机性时,总会获得一定量的随机性(即仅由一方参与者拥有的随机性)。这与非信号博弈策略形成对比,后者可能产生全局随机性而不产生任何局部随机性。我们讨论了对不信任方之间的密码协议的潜在影响。

相似文献

1
Randomness in nonlocal games between mistrustful players.
Quantum Inf Comput. 2017 Jun;17(7):595-610.
2
Local Randomness: Examples and Application.
Phys Rev A (Coll Park). 2018;97. doi: 10.1103/PhysRevA.97.032324.
3
Maximally nonlocal theories cannot be maximally random.
Phys Rev Lett. 2015 Apr 24;114(16):160502. doi: 10.1103/PhysRevLett.114.160502. Epub 2015 Apr 22.
4
Tight Analytic Bound on the Trade-Off between Device-Independent Randomness and Nonlocality.
Phys Rev Lett. 2022 Oct 7;129(15):150403. doi: 10.1103/PhysRevLett.129.150403.
5
N-player quantum games in an EPR setting.
PLoS One. 2012;7(5):e36404. doi: 10.1371/journal.pone.0036404. Epub 2012 May 11.
6
Quantum Games with Unawareness.
Entropy (Basel). 2018 Jul 26;20(8):555. doi: 10.3390/e20080555.
7
Sustainable Optimal Control for Switched Pollution-Control Problem with Random Duration.
Entropy (Basel). 2023 Oct 8;25(10):1426. doi: 10.3390/e25101426.
8
Zero-determinant strategies in finitely repeated games.
J Theor Biol. 2018 Feb 7;438:61-77. doi: 10.1016/j.jtbi.2017.11.002. Epub 2017 Nov 14.
9
Nonlocality and conflicting interest games.
Phys Rev Lett. 2015 Jan 16;114(2):020401. doi: 10.1103/PhysRevLett.114.020401. Epub 2015 Jan 14.
10
Randomness Certification from Multipartite Quantum Steering for Arbitrary Dimensional Systems.
Phys Rev Lett. 2024 Feb 23;132(8):080201. doi: 10.1103/PhysRevLett.132.080201.

引用本文的文献

1
Generalised Entropy Accumulation.
Commun Math Phys. 2024;405(11):261. doi: 10.1007/s00220-024-05121-4. Epub 2024 Oct 12.
2
Local Randomness: Examples and Application.
Phys Rev A (Coll Park). 2018;97. doi: 10.1103/PhysRevA.97.032324.

本文引用的文献

1
Practical device-independent quantum cryptography via entropy accumulation.
Nat Commun. 2018 Jan 31;9(1):459. doi: 10.1038/s41467-017-02307-4.
2
Fully device-independent quantum key distribution.
Phys Rev Lett. 2014 Oct 3;113(14):140501. doi: 10.1103/PhysRevLett.113.140501. Epub 2014 Sep 29.
3
Random numbers certified by Bell's theorem.
Nature. 2010 Apr 15;464(7291):1021-4. doi: 10.1038/nature09008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验