Suppr超能文献

非平稳时间序列中的在线条件异常值检测

Online Conditional Outlier Detection in Nonstationary Time Series.

作者信息

Liu Siqi, Wright Adam, Hauskrecht Milos

机构信息

Department of Computer Science, University of Pittsburgh.

Brigham and Women's Hospital and Harvard Medical School.

出版信息

Proc Int Fla AI Res Soc Conf. 2017 May;2017:86-91.

Abstract

The objective of this work is to develop methods for detecting outliers in time series data. Such methods can become the key component of various monitoring and alerting systems, where an outlier may be equal to some adverse condition that needs human attention. However, real-world time series are often affected by various sources of variability present in the environment that may influence the quality of detection; they may (1) explain some of the changes in the signal that would otherwise lead to false positive detections, as well as, (2) reduce the sensitivity of the detection algorithm leading to increase in false negatives. To alleviate these problems, we propose a new two-layer outlier detection approach that first tries to model and account for the nonstationarity and periodic variation in the time series, and then tries to use other observable variables in the environment to explain any additional signal variation. Our experiments on several data sets in different domains show that our method provides more accurate modeling of the time series, and that it is able to significantly improve outlier detection performance.

摘要

这项工作的目标是开发用于检测时间序列数据中异常值的方法。此类方法可成为各种监测和警报系统的关键组成部分,在这些系统中,异常值可能等同于某些需要人工关注的不利状况。然而,现实世界中的时间序列常常受到环境中各种变异性来源的影响,这些变异性可能会影响检测质量;它们可能(1)解释信号中的一些变化,否则这些变化会导致误报,以及(2)降低检测算法的灵敏度,导致漏报增加。为了缓解这些问题,我们提出了一种新的两层异常值检测方法,该方法首先尝试对时间序列中的非平稳性和周期性变化进行建模并加以考虑,然后尝试使用环境中的其他可观测变量来解释任何额外的信号变化。我们在不同领域的多个数据集上进行的实验表明,我们的方法能够对时间序列进行更准确的建模,并且能够显著提高异常值检测性能。

相似文献

4
A framework for periodic outlier pattern detection in time-series sequences.时间序列序列中周期性异常模式检测的框架。
IEEE Trans Cybern. 2014 May;44(5):569-82. doi: 10.1109/TSMCC.2013.2261984. Epub 2013 May 30.
7
Evaluation of robust outlier detection methods for zero-inflated complex data.零膨胀复杂数据的稳健异常值检测方法评估
J Appl Stat. 2019 Sep 27;47(7):1144-1167. doi: 10.1080/02664763.2019.1671961. eCollection 2020.
9
DIFFERENTIALLY PRIVATE OUTLIER DETECTION IN A COLLABORATIVE ENVIRONMENT.协作环境下的差分隐私异常检测
Int J Coop Inf Syst. 2018 Sep;27(3). doi: 10.1142/S0218843018500053. Epub 2018 Jul 3.

引用本文的文献

2
Change-Point Detection Method for Clinical Decision Support System Rule Monitoring.临床决策支持系统规则监测的变点检测方法
Artif Intell Med Conf Artif Intell Med (2005-). 2017 Jun;10259:126-135. doi: 10.1007/978-3-319-59758-4_14. Epub 2017 May 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验