Centre for Pattern Recognition and Data Analytics, School of Information Technology, Deakin University, Geelong, Australia.
J Med Syst. 2018 Apr 11;42(5):94. doi: 10.1007/s10916-018-0951-4.
Evidence-based medicine often involves the identification of patients with similar conditions, which are often captured in ICD (International Classification of Diseases (World Health Organization 2013)) code sequences. With no satisfying prior solutions for matching ICD-10 code sequences, this paper presents a method which effectively captures the clinical similarity among routine patients who have multiple comorbidities and complex care needs. Our method leverages the recent progress in representation learning of individual ICD-10 codes, and it explicitly uses the sequential order of codes for matching. Empirical evaluation on a state-wide cancer data collection shows that our proposed method achieves significantly higher matching performance compared with state-of-the-art methods ignoring the sequential order. Our method better identifies similar patients in a number of clinical outcomes including readmission and mortality outlook. Although this paper focuses on ICD-10 diagnosis code sequences, our method can be adapted to work with other codified sequence data.
循证医学通常涉及识别具有相似条件的患者,这些条件通常在 ICD(国际疾病分类(世界卫生组织 2013 年))代码序列中捕获。由于没有令人满意的 ICD-10 代码序列匹配的先前解决方案,本文提出了一种方法,该方法可以有效地捕获具有多种合并症和复杂护理需求的常规患者之间的临床相似性。我们的方法利用了个体 ICD-10 代码表示学习的最新进展,并明确使用代码的顺序进行匹配。在全州范围内的癌症数据集中进行的实证评估表明,与忽略顺序的最先进方法相比,我们提出的方法在匹配性能方面显著提高。我们的方法在包括再入院和死亡率前景在内的许多临床结果中更好地识别出相似的患者。虽然本文侧重于 ICD-10 诊断代码序列,但我们的方法可以适用于其他编码序列数据。