Suppr超能文献

使用加速失效时间模型预测急诊科出院患者的住院时间

Predicting Length of Stay among Patients Discharged from the Emergency Department-Using an Accelerated Failure Time Model.

作者信息

Chaou Chung-Hsien, Chen Hsiu-Hsi, Chang Shu-Hui, Tang Petrus, Pan Shin-Liang, Yen Amy Ming-Fang, Chiu Te-Fa

机构信息

Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University College of Medicine, Taoyuan, Taiwan.

Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.

出版信息

PLoS One. 2017 Jan 20;12(1):e0165756. doi: 10.1371/journal.pone.0165756. eCollection 2017.

Abstract

BACKGROUND

Emergency department (ED) crowding continues to be an important health care issue in modern countries. Among the many crucial quality indicators for monitoring the throughput process, a patient's length of stay (LOS) is considered the most important one since it is both the cause and the result of ED crowding. The aim of this study is to identify and quantify the influence of different patient-related or diagnostic activities-related factors on the ED LOS of discharged patients.

METHODS

This is a retrospective electronic data analysis. All patients who were discharged from the ED of a tertiary teaching hospital in 2013 were included. A multivariate accelerated failure time model was used to analyze the influence of the collected covariates on patient LOS.

RESULTS

A total of 106,206 patients were included for analysis with an overall medium ED LOS of 1.46 (interquartile range = 2.03) hours. Among them, 96% were discharged by a physician, 3.5% discharged against medical advice, 0.5% left without notice, and only 0.02% left without being seen by a physician. In the multivariate analysis, increased age (>80 vs <20, time ratio (TR) = 1.408, p<0.0001), higher acuity level (triage level I vs. level V, TR = 1.343, p<0.0001), transferred patients (TR = 1.350, p<0.0001), X-rays obtained (TR = 1.181, p<0.0001), CT scans obtained (TR = 1.515, p<0.0001), laboratory tests (TR = 2.654, p<0.0001), consultation provided (TR = 1.631, p<0.0001), observation provided (TR = 8.435, p<0.0001), critical condition declared (TR = 1.205, p<0.0001), day-shift arrival (TR = 1.223, p<0.0001), and an increased ED daily census (TR = 1.057, p<0.0001) lengthened the ED LOS with various effect sizes. On the other hand, male sex (TR = 0.982, p = 0.002), weekend arrival (TR = 0.928, p<0.0001), and adult non-trauma patients (compared with pediatric non-trauma, TR = 0.687, p<0.0001) were associated with shortened ED LOS. A prediction diagram was made accordingly and compared with the actual LOS.

CONCLUSIONS

The influential factors on the ED LOS in discharged patients were identified and quantified in the current study. The model's predicted ED LOS may provide useful information for physicians or patients to better anticipate an individual's LOS and to help the administrative level plan its staffing policy.

摘要

背景

急诊科拥挤仍是现代国家一个重要的医疗保健问题。在众多用于监测诊疗流程的关键质量指标中,患者的住院时长被认为是最重要的,因为它既是急诊科拥挤的原因,也是其结果。本研究旨在识别并量化不同患者相关因素或诊断活动相关因素对出院患者急诊科住院时长的影响。

方法

这是一项回顾性电子数据分析。纳入了2013年从一家三级教学医院急诊科出院的所有患者。采用多变量加速失效时间模型分析所收集协变量对患者住院时长的影响。

结果

共纳入106206例患者进行分析,急诊科平均住院时长为1.46小时(四分位间距=2.03小时)。其中,96%由医生办理出院,3.5%违反医嘱出院,0.5%擅自离院,仅0.02%未见到医生就离开。多变量分析中,年龄增加(>80岁与<20岁相比,时间比(TR)=1.408,p<0.0001)、病情严重程度更高(分诊I级与V级相比,TR = 1.343,p<0.0001)、转院患者(TR = 1.350,p<0.0001)、进行过X光检查(TR = 1.181,p<0.0001)、进行过CT扫描(TR = 1.515,p<0.0001)、进行过实验室检查(TR = 2.654,p<0.0001)、接受过会诊(TR = 1.631,p<0.0001)、接受过观察(TR = 8.435,p<0.0001)、被宣布为危急情况(TR = 1.205,p<0.0001)、日间到达(TR = 1.223,p<0.0001)以及急诊科每日普查人数增加(TR = 1.057,p<0.0001)均以不同效应量延长了急诊科住院时长。另一方面,男性(TR = 0.982,p = 0.002)、周末到达(TR = 0.928,p<0.0001)以及成年非创伤患者(与儿童非创伤患者相比,TR = 0.687,p<0.0001)与缩短的急诊科住院时长相关。据此制作了预测图并与实际住院时长进行比较。

结论

本研究识别并量化了出院患者急诊科住院时长的影响因素。该模型预测的急诊科住院时长可为医生或患者提供有用信息,以便更好地预测个体的住院时长,并帮助管理层面规划其人员配置政策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca22/5249112/5ecac185b435/pone.0165756.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验