Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
Sci Adv. 2021 Apr 14;7(16). doi: 10.1126/sciadv.abe1761. Print 2021 Apr.
Molecular simulations have played an instrumental role in uncovering the structural dynamics and physical properties of virus capsids. In this work, we move beyond equilibrium physicochemical characterization of a virus system to study a stage of the infection process that is required for viral proliferation. Despite many biochemical and functional studies, the molecular mechanism of host cell entry by non-enveloped viruses remains largely unresolved. Flock House virus (FHV) is a model system for non-enveloped viruses and is the subject of the current study. FHV infects through the acid-dependent endocytic pathway, where low pH triggers externalization of membrane-disrupting (γ) peptides from the capsid interior. Using all-atom equilibrium and enhanced sampling simulations, the mechanism and energetics of γ peptide liberation and the effect of pH on this process are investigated. Our computations agree with experimental findings and reveal nanoscopic details regarding the pH control mechanism, which are not readily accessible in experiments.
分子模拟在揭示病毒衣壳的结构动力学和物理性质方面发挥了重要作用。在这项工作中,我们超越了对病毒系统的平衡物理化学特性的研究,转而研究感染过程中病毒增殖所必需的一个阶段。尽管有许多生化和功能研究,但无包膜病毒进入宿主细胞的分子机制在很大程度上仍未得到解决。禽白细胞增生症病毒(FHV)是无包膜病毒的模型系统,也是当前研究的主题。FHV 通过酸依赖性的内吞作用途径感染,在该途径中,低 pH 值会触发来自衣壳内部的破坏膜(γ)肽的外翻。使用全原子平衡和增强采样模拟,研究了γ肽释放的机制和能量学,以及 pH 值对这一过程的影响。我们的计算结果与实验结果一致,并揭示了有关 pH 控制机制的纳米级细节,这些细节在实验中不易获得。