Suppr超能文献

优化的参数选择揭示了蛋白质折叠马尔可夫状态模型的趋势。

Optimized parameter selection reveals trends in Markov state models for protein folding.

作者信息

Husic Brooke E, McGibbon Robert T, Sultan Mohammad M, Pande Vijay S

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, USA.

出版信息

J Chem Phys. 2016 Nov 21;145(19):194103. doi: 10.1063/1.4967809.

Abstract

As molecular dynamics simulations access increasingly longer time scales, complementary advances in the analysis of biomolecular time-series data are necessary. Markov state models offer a powerful framework for this analysis by describing a system's states and the transitions between them. A recently established variational theorem for Markov state models now enables modelers to systematically determine the best way to describe a system's dynamics. In the context of the variational theorem, we analyze ultra-long folding simulations for a canonical set of twelve proteins [K. Lindorff-Larsen et al., Science 334, 517 (2011)] by creating and evaluating many types of Markov state models. We present a set of guidelines for constructing Markov state models of protein folding; namely, we recommend the use of cross-validation and a kinetically motivated dimensionality reduction step for improved descriptions of folding dynamics. We also warn that precise kinetics predictions rely on the features chosen to describe the system and pose the description of kinetic uncertainty across ensembles of models as an open issue.

摘要

随着分子动力学模拟能够处理越来越长的时间尺度,对生物分子时间序列数据进行分析的相应进展变得十分必要。马尔可夫状态模型通过描述系统的状态及其之间的转变,为这种分析提供了一个强大的框架。最近为马尔可夫状态模型建立的变分定理,现在使建模者能够系统地确定描述系统动力学的最佳方法。在变分定理的背景下,我们通过创建和评估多种类型的马尔可夫状态模型,分析了一组由12种典型蛋白质构成的超长折叠模拟 [K. 林多夫-拉森等人,《科学》334, 517 (2011)]。我们提出了一套构建蛋白质折叠马尔可夫状态模型的指导原则;也就是说,我们建议使用交叉验证和动力学驱动的降维步骤,以更好地描述折叠动力学。我们还警告说,精确的动力学预测依赖于用于描述系统的特征,并将跨模型集合的动力学不确定性描述作为一个开放问题提出。

相似文献

4
Markov State Models: From an Art to a Science.马尔可夫状态模型:从一门艺术到一门科学。
J Am Chem Soc. 2018 Feb 21;140(7):2386-2396. doi: 10.1021/jacs.7b12191. Epub 2018 Feb 2.
8
Variational selection of features for molecular kinetics.分子动力学特征的变分选择
J Chem Phys. 2019 May 21;150(19):194108. doi: 10.1063/1.5083040.
9

引用本文的文献

4
Information Bottleneck Approach for Markov Model Construction.信息瓶颈方法在马尔可夫模型构建中的应用。
J Chem Theory Comput. 2024 Jun 25;20(12):5352-5367. doi: 10.1021/acs.jctc.4c00449. Epub 2024 Jun 10.
5
Markov State Models: To Optimize or Not to Optimize.马尔可夫状态模型:优化还是不优化。
J Chem Theory Comput. 2024 Jan 23;20(2):977-988. doi: 10.1021/acs.jctc.3c01134. Epub 2024 Jan 1.
10
Unsupervised Learning Methods for Molecular Simulation Data.无监督学习方法在分子模拟数据中的应用。
Chem Rev. 2021 Aug 25;121(16):9722-9758. doi: 10.1021/acs.chemrev.0c01195. Epub 2021 May 4.

本文引用的文献

1
Protein Folding: A Perspective from Theory and Experiment.蛋白质折叠:理论与实验视角
Angew Chem Int Ed Engl. 1998 Apr 20;37(7):868-893. doi: 10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.0.CO;2-H.
4
Markov state models of protein misfolding.蛋白质错误折叠的马尔可夫状态模型。
J Chem Phys. 2016 Feb 21;144(7):075101. doi: 10.1063/1.4941579.
6
Variational Approach to Molecular Kinetics.分子动力学的变分方法
J Chem Theory Comput. 2014 Apr 8;10(4):1739-52. doi: 10.1021/ct4009156. Epub 2014 Mar 6.
8
Kinetic distance and kinetic maps from molecular dynamics simulation.分子动力学模拟中的动力学距离和动力学图谱。
J Chem Theory Comput. 2015 Oct 13;11(10):5002-11. doi: 10.1021/acs.jctc.5b00553. Epub 2015 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验