Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA.
Illumina, Inc., San Diego, California, USA.
Nat Biotechnol. 2018 Jun;36(5):428-431. doi: 10.1038/nbt.4112. Epub 2018 Apr 9.
We present a highly scalable assay for whole-genome methylation profiling of single cells. We use our approach, single-cell combinatorial indexing for methylation analysis (sci-MET), to produce 3,282 single-cell bisulfite sequencing libraries and achieve read alignment rates of 68 ± 8%. We apply sci-MET to discriminate the cellular identity of a mixture of three human cell lines and to identify excitatory and inhibitory neuronal populations from mouse cortical tissue.
我们提出了一种高通量的单细胞全基因组甲基化分析方法。我们采用单细胞组合索引甲基化分析(sci-MET)技术,生成了 3282 个单细胞亚硫酸氢盐测序文库,获得了 68±8%的读段比对率。我们应用 sci-MET 来区分三种人源细胞系的混合细胞的细胞身份,并从鼠大脑皮质组织中鉴定出兴奋性和抑制性神经元群体。