Suppr超能文献

由细胞内在特性和基质限制改变的双相机械敏感细胞迁移的建模与预测。

Modeling and predictions of biphasic mechanosensitive cell migration altered by cell-intrinsic properties and matrix confinement.

作者信息

Pathak Amit

机构信息

To whom correspondence should be addressed. One Brookings Dr, CB 1185, St. Louis, MO 63130, United States of America.

出版信息

Phys Biol. 2018 Jun 20;15(6):065001. doi: 10.1088/1478-3975/aabdcc.

Abstract

Motile cells sense the stiffness of their extracellular matrix through adhesions and respond by modulating the generated forces, which in turn lead to varying mechanosensitive migration phenotypes. Through modeling and experiments, cell migration speed is known to vary with matrix stiffness in a biphasic manner, with optimal motility at an intermediate stiffness. Here, we present a 2D cell model defined by nodes and elements, integrated with subcellular modeling components corresponding to mechanotransductive adhesion formation, force generation, protrusions and node displacement. On 2D matrices, our calculations reproduce the classic biphasic dependence of migration speed on matrix stiffness and predict that cell types with higher force-generating ability do not slow down on very stiff matrices, thus disabling the biphasic response. We also predict that cell types defined by a lower number of total receptors require stiffer matrices for optimal motility, which also limits the biphasic response. For a cell type with robust biphasic migration on a 2D surface, simulations in channel-like confined environments of varying width and height predict faster migration in more confined matrices. Simulations performed in shallower channels predict that the biphasic mechanosensitive cell migration response is more robust on 2D micro-patterns compared to the channel-like 3D confinement. Thus, variations in the dimensionality of matrix confinement alters the way migratory cells sense and respond to the matrix stiffness. Our calculations reveal new phenotypes of stiffness- and topography-sensitive cell migration that critically depend on both cell-intrinsic and matrix properties. These predictions may inform our understanding of various mechanosensitive modes of cell motility that could enable tumor invasion through topographically heterogeneous microenvironments.

摘要

运动细胞通过黏附感知细胞外基质的硬度,并通过调节所产生的力做出反应,这反过来又导致不同的机械敏感迁移表型。通过建模和实验可知,细胞迁移速度随基质硬度呈双相变化,在中等硬度时迁移能力最佳。在此,我们提出一个由节点和单元定义的二维细胞模型,该模型与对应于机械转导黏附形成、力产生、突起和节点位移的亚细胞建模组件相结合。在二维基质上,我们的计算重现了迁移速度对基质硬度的经典双相依赖性,并预测具有较高力产生能力的细胞类型在非常硬的基质上不会减慢速度,从而使双相反应失效。我们还预测,总受体数量较少的细胞类型需要更硬的基质才能实现最佳迁移,这也限制了双相反应。对于在二维表面上具有强大双相迁移能力的细胞类型,在不同宽度和高度的通道状受限环境中的模拟预测,在更受限的基质中迁移速度更快。在较浅通道中进行的模拟预测,与通道状三维受限环境相比,双相机械敏感细胞迁移反应在二维微图案上更稳健。因此,基质受限维度的变化改变了迁移细胞感知和响应基质硬度的方式。我们的计算揭示了刚度和地形敏感细胞迁移的新表型,这些表型关键取决于细胞内在特性和基质特性。这些预测可能有助于我们理解细胞运动的各种机械敏感模式,这些模式可能使肿瘤能够通过地形异质的微环境进行侵袭。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验