Suppr超能文献

通过化学特征预测G蛋白偶联气味受体的激动剂。

Agonists of G-Protein-Coupled Odorant Receptors Are Predicted from Chemical Features.

作者信息

Bushdid C, de March C A, Fiorucci S, Matsunami H, Golebiowski J

机构信息

Institute of Chemistry of Nice, UMR CNRS 7272 , Université Côte d'Azur , Nice , France.

Department of Molecular Genetics and Microbiology , Duke University Medical Center , Durham , North Carolina 27710 , United States.

出版信息

J Phys Chem Lett. 2018 May 3;9(9):2235-2240. doi: 10.1021/acs.jpclett.8b00633. Epub 2018 Apr 17.

Abstract

Predicting the activity of chemicals for a given odorant receptor is a longstanding challenge. Here the activity of 258 chemicals on the human G-protein-coupled odorant receptor (OR)51E1, also known as prostate-specific G-protein-coupled receptor 2 (PSGR2), was virtually screened by machine learning using 4884 chemical descriptors as input. A systematic control by functional in vitro assays revealed that a support vector machine algorithm accurately predicted the activity of a screened library. It allowed us to identify two novel agonists in vitro for OR51E1. The transferability of the protocol was assessed on OR1A1, OR2W1, and MOR256-3 odorant receptors, and, in each case, novel agonists were identified with a hit rate of 39-50%. We further show how ligands' efficacy is encoded into residues within OR51E1 cavity using a molecular modeling protocol. Our approach allows widening the chemical spaces associated with odorant receptors. This machine-learning protocol based on chemical features thus represents an efficient tool for screening ligands for G-protein-coupled odorant receptors that modulate non-olfactory functions or, upon combinatorial activation, give rise to our sense of smell.

摘要

预测给定气味受体的化学物质活性是一项长期挑战。在此,利用4884个化学描述符作为输入,通过机器学习对258种化学物质作用于人类G蛋白偶联气味受体(OR)51E1(也称为前列腺特异性G蛋白偶联受体2,即PSGR2)的活性进行了虚拟筛选。通过功能性体外试验进行的系统对照表明,支持向量机算法准确预测了筛选文库的活性。这使我们能够在体外鉴定出两种针对OR51E1的新型激动剂。在OR1A1、OR2W1和MOR256 - 3气味受体上评估了该方案的可转移性,并且在每种情况下,都鉴定出了新型激动剂,命中率为39% - 50%。我们还展示了如何使用分子建模方案将配体的功效编码到OR51E1腔内的残基中。我们的方法能够拓宽与气味受体相关的化学空间。因此,这种基于化学特征的机器学习方案是一种用于筛选调节非嗅觉功能或在组合激活时产生嗅觉的G蛋白偶联气味受体配体的有效工具。

相似文献

引用本文的文献

6
New insights into the roles of olfactory receptors in cardiovascular disease.嗅觉受体在心血管疾病中的作用新见解。
Mol Cell Biochem. 2024 Jul;479(7):1615-1626. doi: 10.1007/s11010-024-05024-x. Epub 2024 May 18.

本文引用的文献

2
Odorant Receptor 7D4 Activation Dynamics.气味受体 7D4 的激活动力学。
Angew Chem Int Ed Engl. 2018 Apr 16;57(17):4554-4558. doi: 10.1002/anie.201713065. Epub 2018 Mar 24.
9
G protein-coupled odorant receptors: From sequence to structure.G蛋白偶联气味受体:从序列到结构
Protein Sci. 2015 Sep;24(9):1543-8. doi: 10.1002/pro.2717. Epub 2015 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验