Suppr超能文献

利用人工智能进行 G 蛋白偶联受体激活研究:计算预测方法作为知识的关键驱动力。

Leveraging Artificial Intelligence in GPCR Activation Studies: Computational Prediction Methods as Key Drivers of Knowledge.

机构信息

Department of Life Sciences, University of Coimbra, Coimbra, Portugal.

CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.

出版信息

Methods Mol Biol. 2025;2870:183-220. doi: 10.1007/978-1-0716-4213-9_10.

Abstract

G protein-coupled receptors (GPCRs) are key molecules involved in cellular signaling and are attractive targets for pharmacological intervention. This chapter is designed to explore the range of algorithms used to predict GPCRs' activation states, while also examining the pharmaceutical implications of these predictions. Our primary objective is to show how artificial intelligence (AI) is key in GPCR research to reveal the intricate dynamics of activation and inactivation processes, shedding light on the complex regulatory mechanisms of this vital protein family. We describe several computational strategies that leverage diverse structural data from the Protein Data Bank, molecular dynamic simulations, or ligand-based methods to predict the activation states of GPCRs. We demonstrate how the integration of AI into GPCR research not only enhances our understanding of their dynamic properties but also presents immense potential for driving pharmaceutical research and development, offering promising new avenues in the search for newer, better therapeutic agents.

摘要

G 蛋白偶联受体(GPCRs)是参与细胞信号转导的关键分子,也是药物干预的有吸引力的靶点。本章旨在探讨用于预测 GPCR 激活状态的各种算法,同时研究这些预测的药物学意义。我们的主要目标是展示人工智能(AI)在 GPCR 研究中的关键作用,以揭示激活和失活过程的复杂动态,阐明这个重要蛋白家族的复杂调控机制。我们描述了几种计算策略,这些策略利用来自蛋白质数据库、分子动力学模拟或基于配体的方法的不同结构数据来预测 GPCR 的激活状态。我们展示了将 AI 融入 GPCR 研究不仅可以增强我们对其动态特性的理解,而且为推动药物研究和开发提供了巨大的潜力,为寻找更新更好的治疗剂提供了有希望的新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验