Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America.
Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
PLoS Comput Biol. 2018 Apr 12;14(4):e1006095. doi: 10.1371/journal.pcbi.1006095. eCollection 2018 Apr.
Rho-GTPases are master regulators of polarity establishment and cell morphology. Positive feedback enables concentration of Rho-GTPases into clusters at the cell cortex, from where they regulate the cytoskeleton. Different cell types reproducibly generate either one (e.g. the front of a migrating cell) or several clusters (e.g. the multiple dendrites of a neuron), but the mechanistic basis for unipolar or multipolar outcomes is unclear. The design principles of Rho-GTPase circuits are captured by two-component reaction-diffusion models based on conserved aspects of Rho-GTPase biochemistry. Some such models display rapid winner-takes-all competition between clusters, yielding a unipolar outcome. Other models allow prolonged co-existence of clusters. We investigate the behavior of a simple class of models and show that while the timescale of competition varies enormously depending on model parameters, a single factor explains a large majority of this variation. The dominant factor concerns the degree to which the maximal active GTPase concentration in a cluster approaches a "saturation point" determined by model parameters. We suggest that both saturation and the effect of saturation on competition reflect fundamental properties of the Rho-GTPase polarity machinery, regardless of the specific feedback mechanism, which predict whether the system will generate unipolar or multipolar outcomes.
Rho-GTPases 是建立极性和细胞形态的主要调节剂。正反馈使 Rho-GTPases 集中在细胞皮质的簇中,从那里它们调节细胞骨架。不同的细胞类型可重复性地产生一个(例如,迁移细胞的前端)或多个簇(例如,神经元的多个树突),但单极或多极结果的机制基础尚不清楚。基于 Rho-GTPase 生化的保守方面的双组分反应扩散模型捕获了 Rho-GTPase 电路的设计原则。一些这样的模型显示了簇之间快速的胜者通吃竞争,产生单极结果。其他模型允许簇的长时间共存。我们研究了一类简单模型的行为,并表明尽管竞争的时间尺度根据模型参数而变化巨大,但一个单一的因素解释了这种变化的绝大多数。主要因素涉及簇中最大活性 GTPase 浓度接近由模型参数确定的“饱和点”的程度。我们认为,饱和以及饱和对竞争的影响反映了 Rho-GTPase 极性机制的基本特性,而与特定的反馈机制无关,这可以预测系统将产生单极或多极结果。