Suppr超能文献

基于粒子的极性建立模拟揭示了图灵模式形成的随机促进。

Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation.

机构信息

Department of Chemistry, The University of North Carolina, Chapel Hill, NC, United States of America.

Program in Molecular and Cellular Biophysics, The University of North Carolina, Chapel Hill, NC, United States of America.

出版信息

PLoS Comput Biol. 2018 Mar 12;14(3):e1006016. doi: 10.1371/journal.pcbi.1006016. eCollection 2018 Mar.

Abstract

Polarity establishment, the spontaneous generation of asymmetric molecular distributions, is a crucial component of many cellular functions. Saccharomyces cerevisiae (yeast) undergoes directed growth during budding and mating, and is an ideal model organism for studying polarization. In yeast and many other cell types, the Rho GTPase Cdc42 is the key molecular player in polarity establishment. During yeast polarization, multiple patches of Cdc42 initially form, then resolve into a single front. Because polarization relies on strong positive feedback, it is likely that the amplification of molecular-level fluctuations underlies the generation of multiple nascent patches. In the absence of spatial cues, these fluctuations may be key to driving polarization. Here we used particle-based simulations to investigate the role of stochastic effects in a Turing-type model of yeast polarity establishment. In the model, reactions take place either between two molecules on the membrane, or between a cytosolic and a membrane-bound molecule. Thus, we developed a computational platform that explicitly simulates molecules at and near the cell membrane, and implicitly handles molecules away from the membrane. To evaluate stochastic effects, we compared particle simulations to deterministic reaction-diffusion equation simulations. Defining macroscopic rate constants that are consistent with the microscopic parameters for this system is challenging, because diffusion occurs in two dimensions and particles exchange between the membrane and cytoplasm. We address this problem by empirically estimating macroscopic rate constants from appropriately designed particle-based simulations. Ultimately, we find that stochastic fluctuations speed polarity establishment and permit polarization in parameter regions predicted to be Turing stable. These effects can operate at Cdc42 abundances expected of yeast cells, and promote polarization on timescales consistent with experimental results. To our knowledge, our work represents the first particle-based simulations of a model for yeast polarization that is based on a Turing mechanism.

摘要

极性建立,即不对称分子分布的自发产生,是许多细胞功能的关键组成部分。酿酒酵母(yeast)在出芽和交配过程中进行定向生长,是研究极性的理想模式生物。在酵母和许多其他细胞类型中,Rho GTPase Cdc42 是极性建立的关键分子参与者。在酵母极性建立过程中,最初会形成多个 Cdc42 斑点,然后这些斑点会解析为单个前沿。由于极性建立依赖于强烈的正反馈,因此分子水平波动的放大很可能是产生多个新生斑点的原因。在没有空间线索的情况下,这些波动可能是驱动极化的关键。在这里,我们使用基于粒子的模拟来研究随机效应在酵母极性建立的 Turing 型模型中的作用。在该模型中,反应要么发生在膜上的两个分子之间,要么发生在细胞质和膜结合分子之间。因此,我们开发了一个计算平台,该平台明确模拟细胞膜上和附近的分子,同时隐式处理远离细胞膜的分子。为了评估随机效应,我们将粒子模拟与确定性反应-扩散方程模拟进行了比较。为了定义与该系统的微观参数一致的宏观速率常数是具有挑战性的,因为扩散发生在二维空间中,并且粒子在膜和细胞质之间交换。我们通过从适当设计的基于粒子的模拟中经验估计宏观速率常数来解决这个问题。最终,我们发现随机波动可以加速极性建立,并允许在预测为 Turing 稳定的参数区域内极化。这些效应可以在酵母细胞预期的 Cdc42 丰度下发挥作用,并在与实验结果一致的时间尺度上促进极化。据我们所知,我们的工作是第一个基于 Turing 机制的酵母极化模型的基于粒子的模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd91/5864077/a47d1fc06d83/pcbi.1006016.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验